11.在區(qū)間[-1,5]上任取一個實數(shù)b,則曲線f(x)=x3-2x2+bx在點(1,f(1))處切線的傾斜角為鈍角的概率為$\frac{1}{3}$.

分析 利用曲線f(x)=x3-2x2+bx在點(1,f(1))處切線的傾斜角為鈍角,求出b的范圍,以長度為測度,即可求出所求概率.

解答 解:∵f(x)=x3-2x2+bx,
∴f′(x)=3x2-4x+b,
∴f′(1)=b-1<0,∴b<1.
由幾何概型,可得所求概率為$\frac{1-(-1)}{5-(-1)}$=$\frac{1}{3}$.
故答案為$\frac{1}{3}$.

點評 本題考查概率的計算,考查導數(shù)的幾何意義,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.設f(x)=1g$\frac{1+{2}^{x}+{3}^{x}+{4}^{x}•a}{4}$,其中a是實數(shù),若f(x)當x∈(-∞,1]時有意義,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f (x)=alnx+$\frac{1}{2}$x2-ax (a為常數(shù)).
(Ⅰ)試討論f (x)的單調(diào)性;
(Ⅱ)若f (x)有兩個極值點分別為x1,x2.不等式f (x1)+f (x2)<λ(x1+x2)恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知集合A={x|x2+5x>0},B={x|-3<x<4},則A∩B等于( 。
A.(-5,0)B.(-3,0)C.(0,4)D.(-5,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合A={x|(x-2)(x+6)>0},B={x|-3<x<4},則A∩B等于( 。
A.(-3,-2)B.(-3,2)C.(2,4)D.(-2,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知F1(-c,0)、F2(c、0)分別是橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{b^2}$=1(0<b<a<3)的左、右焦點,點P(2,$\sqrt{2}$)是橢圓G上一點,且|PF1|-|PF2|=a.
(1)求橢圓G的方程;
(2)設直線l與橢圓G相交于A、B兩點,若$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,其中O為坐標原點,判斷O到直線l的距離是否為定值?若是,求出該定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果是6,則判斷框內(nèi)m的取值范圍是( 。
A.(30,42]B.(20,30)C.(20,30]D.(20,42)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖是一個幾何體的三視圖,其中正視圖和側(cè)視圖是腰長為1的兩個全等的等腰直角三角形,則該多面體的各條棱中最長棱的長度為(  )
A.$\sqrt{7}$B.$\sqrt{5}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知向量$\overrightarrow{a}$=(x,-3),$\overrightarrow$=(2,-2),且$\overrightarrow{a}$⊥$\overrightarrow$,則x=-3.

查看答案和解析>>

同步練習冊答案