15.設(shè)全集U={1,2,3,4,5,6,7},B={2,4,6},則∁UB=( 。
A.{2,4,6}B.{1,3,5}C.{1,3,5,7}D.{1,3}

分析 根據(jù)補(bǔ)集的定義寫出∁UB即可.

解答 解:全集U={1,2,3,4,5,6,7},B={2,4,6},
則∁UB={1,3,5,7}.
故選:C.

點(diǎn)評(píng) 本題考查了補(bǔ)集的運(yùn)算與應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)p:實(shí)數(shù)x滿足x2-4ax+3a2<0,其中a>0;q:實(shí)數(shù)x滿足$\frac{x-3}{x-2}$<0.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知拋物線${C_1}:{x^2}=4y$的焦點(diǎn)F也是橢圓${C_2}:\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的一個(gè)焦點(diǎn),C1與C2的公共弦的長(zhǎng)為$2\sqrt{6}$.
(1)求橢圓C2的方程;
(2)經(jīng)過(guò)點(diǎn)(-1,0)作斜率為k的直線l與曲線C2交于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn),是否存在實(shí)數(shù)k,使O在以AB為直徑的圓外?若存在,求k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知定義在R上的偶函數(shù)f(x)滿足f(x-4)=f(x),且在區(qū)間[0,2]上f(x)=x,若關(guān)于x的方程f(x)=loga|x|有六個(gè)不同的根,則a的范圍為( 。
A.($\sqrt{6}$,$\sqrt{10}$)B.($\sqrt{6}$,2$\sqrt{2}$)C.(2,2$\sqrt{2}$)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.直線l:y=kx+1與圓O:x2+y2=1交于A,B,則“k=1”是“△ABC的面積為$\frac{1}{2}$”的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在平面直角坐標(biāo)系中,下列四個(gè)結(jié)論:
①每一條直線都有點(diǎn)斜式和斜截式方程;
②傾斜角是鈍角的直線,斜率為負(fù)數(shù);
③方程$k=\frac{y+1}{x-2}$與方程y+1=k(x-2)可表示同一直線;
④直線l過(guò)點(diǎn)P(x0,y0),傾斜角為90°,則其方程為x=x°;
其中正確的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=x2-πx,α,β,γ∈(0,π),且sinα=$\frac{1}{3}$,tanβ=$\frac{5}{4}$,cosγ=-$\frac{1}{3}$,則( 。
A.f(α)>f(β)>f(γ)B.f(α)>f(γ)>f(β)C.f(β)>f(α)>f(γ)D.f(β)>f(γ)>f(α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)方程22x-1+x-1=0的根為x1,函數(shù)f(x)的零點(diǎn)為x2,若|x1-x2|≤$\frac{1}{4}$,則函數(shù)f(x)可以是( 。
A.$f(x)={x^{\frac{1}{2}}}-1$B.f(x)=2x-1C.$f(x)=ln({x-\frac{1}{3}})$D.f(x)=2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知$\overrightarrow a$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2,|$\overrightarrow{a}+\overrightarrow$|=4,|$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.$\sqrt{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案