8.若數(shù)列{an}滿足$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=d(n∈N*,d為常數(shù)),則稱數(shù)列{an}為調(diào)和數(shù)列.
(1)已知數(shù)列{an}為調(diào)和數(shù)列.且滿足a1=1,a2=$\frac{1}{2}$.求{an}的通項公式;
(2)若數(shù)列{(2n+1)bn}為調(diào)和數(shù)列,且b1=$\frac{1}{3}$,b2=$\frac{1}{15}$,求{bn}的前n項和Sn

分析 (1)數(shù)列{an}為調(diào)和數(shù)列.故{$\frac{1}{{a}_{n}}$}為等差數(shù)列,利用通項公式即可得出.
(2)數(shù)列{(2n+1)bn}為調(diào)和數(shù)列,故$\frac{1}{(2n+1)_{n}}$-$\frac{1}{(2n-1)_{n-1}}$=d(n≥2).由b1=$\frac{1}{3}$,b2=$\frac{1}{15}$,可得:d=2,故$\{\frac{1}{(2n+1)_{n}}\}$是以1為首項,2為公差的等差數(shù)列,可得bn,再利用“裂項求和”方法即可得出.

解答 解:(1)數(shù)列{an}為調(diào)和數(shù)列.故{$\frac{1}{{a}_{n}}$}為等差數(shù)列,
又$\frac{1}{{a}_{2}}-\frac{1}{{a}_{1}}$=2-1=1,
故{$\frac{1}{{a}_{n}}$}是以1為首項,1為公差的等差數(shù)列,
∴$\frac{1}{{a}_{n}}$=1+(n-1)=n,
故an=$\frac{1}{n}$.
(2)數(shù)列{(2n+1)bn}為調(diào)和數(shù)列,故$\frac{1}{(2n+1)_{n}}$-$\frac{1}{(2n-1)_{n-1}}$=d(n≥2).
由b1=$\frac{1}{3}$,b2=$\frac{1}{15}$,可得:d=$\frac{1}{5×\frac{1}{15}}$-$\frac{1}{3×\frac{1}{3}}$=3-1=2,
故$\{\frac{1}{(2n+1)_{n}}\}$是以1為首項,2為公差的等差數(shù)列,
故$\frac{1}{(2n+1)_{n}}$=1+2(n-1)=2n-1,
∴bn=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴Sn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$=$\frac{n}{2n+1}$.

點評 本題考查了等差數(shù)列的通項公式、調(diào)和數(shù)列、數(shù)列遞推關(guān)系、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若loga(3a-1)>1(a>0,且a≠1),則實數(shù)a的取值范圍為( 。
A.$({\frac{1}{3},\frac{1}{2}})$B.$({\frac{1}{3},\frac{1}{2}})∪({1,+∞})$C.(1,+∞)D.$({\frac{1}{3},1})∪({1,+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax(a≤0).
(Ⅰ)當(dāng)a=0時,求f(x)的極值;
(Ⅱ)當(dāng)a<0時,討論f(x)的單調(diào)性;
(Ⅲ)若對任意的a∈(-3,-2)及x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:?a∈R,且a>0,a+$\frac{1}{a}$≥2,命題q:?x0∈R,sinx0+cosx0=$\sqrt{3}$,則下列判斷正確的是( 。
A.p是假命題B.q是真命題C.(¬q)是真命題D.(¬p)∧q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}lnx,x>0\\-x,x<0\end{array}\right.$,若$f({\frac{1}{3}})=\frac{1}{3}f(a)$,則實數(shù)a的值為( 。
A.$\frac{1}{27}$B.$-\frac{1}{27}$C.ln27D.$ln\frac{1}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(-3)=0,則x•f(x)<0的解集是( 。
A.{x|-3<x<0或x>3}B.{x|x<-3或0<x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)y=f(x)定義域是[-2,3],則y=f(2x-1)的定義域是( 。
A.$[0,\frac{5}{2}]$B.[-1,4]C.$[-\frac{1}{2},2]$D.[-5,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)Sn是等差數(shù)列{an}的前n項和,若$\frac{a_7}{a_4}=\frac{7}{13}$,則$\frac{{{S_{13}}}}{S_7}$=( 。
A.1B.-1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=log3(9x+1)-x.
(1)判斷函數(shù)f(x)的奇偶性并證明;
(2)設(shè)函數(shù)g(x)=log3(a+2-$\frac{a+4}{{3}^{x}}$),若關(guān)于x的不等式f(x)≥g(x)對x∈[-1,1]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案