分析 由圓切線的性質(zhì),即與圓心切點(diǎn)連線垂直設(shè)出一個角,通過解直角三角形求出PA,PB的長;利用向量的數(shù)量積公式表示出$\overrightarrow{PA}$•$\overrightarrow{PB}$,利用三角函數(shù)的二倍角公式化簡函數(shù),通過換元,再利用基本不等式求出最小值,由P為左頂點(diǎn),可得最大值,進(jìn)而得到所求范圍.
解答 解:設(shè)PA與PB的夾角為2α,
則|PA|=PB|=$\frac{1}{tanα}$,
∴y=$\overrightarrow{PA}$•$\overrightarrow{PB}$=|PA||PB|cos2α=$\frac{1}{ta{n}^{2}α}$•cos2α=$\frac{1+cos2α}{1-si{n}^{2}α}$•cos2α.
記cos2α=u,則y=$\frac{u(u+1)}{1-u}$=-3+(1-u)+$\frac{2}{1-u}$≥2$\sqrt{(1-u)•\frac{2}{1-u}}$-3=2$\sqrt{2}$-3,
∵P在橢圓的左頂點(diǎn)時,sinα=$\frac{1}{3}$,∴cos2α=1-2sin2α=1-$\frac{2}{9}$=$\frac{7}{9}$,
∴$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值為$\frac{1+\frac{7}{9}}{1-\frac{7}{9}}$•$\frac{7}{9}$=$\frac{56}{9}$,
∴$\overrightarrow{PA}$•$\overrightarrow{PB}$的范圍為[2$\sqrt{2}$-3,$\frac{56}{9}$].
故答案為:[2$\sqrt{2}$-3,$\frac{56}{9}$].
點(diǎn)評 本題考查圓切線的性質(zhì)、三角函數(shù)的二倍角公式、向量的數(shù)量積公式、基本不等式求函數(shù)的最值,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年吉林省高一下學(xué)期期末聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題
當(dāng)時,的最小值為( )
A.10 B.12 C.14 D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (13+3$\sqrt{7}$)cm2 | B. | (12+4$\sqrt{3}$)cm2 | C. | (18+3$\sqrt{7}$)cm2 | D. | $(9+3\sqrt{2}+3\sqrt{5})c{m^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com