【題目】如圖所示,在△ABC中,B= ,AC=2 ,cosC= .
(1)求sin∠BAC的值及BC的長度;
(2)設(shè)BC的中點為D,求中線AD的長.
【答案】
(1)解:∵在△ABC中,B= ,AC=2 ,cosC= ,
∴sinC= = ,
∴sin∠BAC=sin(B+C)=sinBcosC+cosBsinC= × + × = ;
由正弦定理得: = ,即BC= = =6
(2)解:在△ADC中,CD= BC=3,AC=2 ,cosC= ,
由余弦定理得:AD2=AC2+DC2﹣2ACDCcosC=20+9﹣2×2 ×3× =5,
則AD=
【解析】(1)由cosC的值求出sinC的值,根據(jù)誘導(dǎo)公式得到sin∠BAC=sin(B+C),利用兩角和與差的正弦函數(shù)公式化簡,將各自的值代入計算求出值,再由sin∠BAC,sinB,以及AC的長,利用正弦定理求出BC的長即可;(2)根據(jù)D為BC中點,求出CD的長,再由AC與cosC的值,利用余弦定理求出AD的長即可.
【考點精析】認(rèn)真審題,首先需要了解余弦定理的定義(余弦定理:;;).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究患肺癌與是否吸煙有關(guān),做了一次相關(guān)調(diào)查,其中部分?jǐn)?shù)據(jù)丟失,但可以確定的是不吸煙人數(shù)與吸煙人數(shù)相同,吸煙患肺癌人數(shù)占吸煙總?cè)藬?shù)的;不吸煙的人數(shù)中,患肺癌與不患肺癌的比為.
(1)若吸煙不患肺癌的有人,現(xiàn)從患肺癌的人中用分層抽樣的方法抽取人,再從這人中隨機(jī)抽取人進(jìn)行調(diào)查,求這兩人都是吸煙患肺癌的概率;
(2)若研究得到在犯錯誤概率不超過的前提下,認(rèn)為患肺癌與吸煙有關(guān),則吸煙的人數(shù)至少有多少?
附: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知單調(diào)遞減的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2 , a4是等差中項,則公比q= , 通項公式為an= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人在靜水中游泳,速度為4公里/小時,他在水流速度為4公里/小時的河中游泳.
(1)若他垂直游向河對岸,則他實際沿什么方向前進(jìn)?實際前進(jìn)的速度為多少?
(2)他必須朝哪個方向游,才能沿與水流垂直的方向前進(jìn)?實際前進(jìn)的速度為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點與上、下頂點構(gòu)成直角三角形,以橢圓的長軸長為直徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過橢圓右焦點且不平行于軸的動直線與橢圓相交于兩點,探究在軸上是否存在定點,使得為定值?若存在,試求出定值和點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,A為C上異于原點的任意一點,過點A的直線l交C于另一點B,交x軸的正半軸于點D,且有丨FA丨=丨FD丨.當(dāng)點A的橫坐標(biāo)為3時,△ADF為正三角形.
(1)求C的方程;
(2)若直線l1∥l,且l1和C有且只有一個公共點E,
(ⅰ)證明直線AE過定點,并求出定點坐標(biāo);
(ⅱ)△ABE的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某教師調(diào)查了名高三學(xué)生購買的數(shù)學(xué)課外輔導(dǎo)書的數(shù)量,將統(tǒng)計數(shù)據(jù)制成如下表格:
男生 | 女生 | 總計 | |
購買數(shù)學(xué)課外輔導(dǎo)書超過本 | |||
購買數(shù)學(xué)課外輔導(dǎo)書不超過本 | |||
總計 |
(Ⅰ)根據(jù)表格中的數(shù)據(jù),是否有的把握認(rèn)為購買數(shù)學(xué)課外輔導(dǎo)書的數(shù)量與性別相關(guān);
(Ⅱ)從購買數(shù)學(xué)課外輔導(dǎo)書不超過本的學(xué)生中,按照性別分層抽樣抽取人,再從這人中隨機(jī)抽取人詢問購買原因,求恰有名男生被抽到的概率.
附: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知 a=2csinA.
(1)求角C的值;
(2)若c= ,且S△ABC= ,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個圓柱形乒乓球筒,高為厘米,底面半徑為厘米.球筒的上底和下底分別粘有一個乒乓球,乒乓球與球筒底面及側(cè)面均相切(球筒和乒乓球厚度忽略不計).一個平面與兩乒乓球均相切,且此平面截球筒邊緣所得的圖形為一個橢圓,則該橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com