11.已知函數(shù)y=sin$\frac{x}{2}$+$\sqrt{3}$cos$\frac{x}{2}$,x∈R
(1)求y的最大值及取得最大值時相應(yīng)的x的集合;
(2)怎樣由y=sinx(x∈R)圖象的平移和伸縮變換來得到該函數(shù)的圖象?

分析 (1)根據(jù)兩角和的正弦函數(shù)公式可求y=2sin($\frac{x}{2}$+$\frac{π}{3}$),利用正弦函數(shù)的性質(zhì)即可求出函數(shù)的最值,及相應(yīng)的集合.
(2)利用三角函數(shù)的平移變換和伸縮變換求出結(jié)果.

解答 解:(1)∵y=sin$\frac{x}{2}$+$\sqrt{3}$cos$\frac{x}{2}$=2($\frac{1}{2}$sin$\frac{x}{2}$+$\frac{\sqrt{3}}{2}$cos$\frac{x}{2}$)=2sin($\frac{x}{2}$+$\frac{π}{3}$),
∴當$\frac{x}{2}$+$\frac{π}{3}$=2kπ+$\frac{π}{2}$,k∈Z,即x∈{x|x=4kπ+$\frac{π}{3}$,k∈Z}時,sin($\frac{x}{2}$+$\frac{π}{3}$)max=1,ymax=2.
(2)將函數(shù)y=sinx的圖象向左平移$\frac{π}{3}$個單位得y=sin(x+$\frac{π}{3}$),
再將y=sin(x+$\frac{π}{3}$)的圖象上各點橫坐標擴大我原來的2倍而縱坐標不變,得y=sin($\frac{x}{2}$+$\frac{π}{3}$),
再將y=sin($\frac{x}{2}$+$\frac{π}{3}$)的圖象上各點橫坐標不變,縱坐標變?yōu)樵瓉淼?倍即可.

點評 本題主要考察三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的極值的求法,函數(shù)y=Asin(ωx+φ)的圖象變換,屬于基礎(chǔ)題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{2x-3y+6≥0}\\{2x+y-2≤0}\\{y+1≥0}\end{array}\right.$,則z=|x|+y的取值范圍為[-1,$\frac{7}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.三角形的面積s=$\frac{1}{2}$(a+b+c)r,a,b,c為其邊長,r為內(nèi)切圓的半徑,利用類比法可以得出四面體的體積為( 。
A.V=$\frac{1}{3}$abc(a,b,c為地面邊長)
B.V=$\frac{1}{3}$sh(s為地面面積,h為四面體的高)
C.V=$\frac{1}{3}$(ab+bc+ac)h,(a,b,c為地面邊長,h為四面體的高)
D.V=$\frac{1}{3}$(S1+S2+S3+S4)r,(S1,S2,S3,S4分別為四個面的面積,r為內(nèi)切球的半徑)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知等差數(shù)列{an}滿足:a1=101,a3+a4=187,求數(shù)列{|an|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(2-k,4),$\overrightarrow$=(2,k-3),若$\overrightarrow{a}$⊥$\overrightarrow$,則k=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點A,B分別是橢圓$\frac{x^2}{36}+\frac{y^2}{20}$=1長軸的左、右頂點,點F是橢圓的右焦點,點P在橢圓上,且位于x軸上方,PA⊥PF.設(shè)M是橢圓長軸AB上的一點,M到直線AP距離等于|MB|,橢圓上的點到點M的距離d的最小值( 。
A.$\frac{{4\sqrt{3}}}{5}$B.$\sqrt{15}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.不等式|2x-3|<5的解集與-x2+bx+c>0的解集相同,則b+c=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知復(fù)數(shù)z1=1-2i,z2=2+3i,則$\frac{z_1}{z_2}$在復(fù)平面內(nèi)對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在平面直角坐標系中,不等式組$\left\{\begin{array}{l}{y≥0}\\{x-y+a≥0}\\{2x+y-4≤0}\end{array}\right.$(a為常數(shù))表示的平面區(qū)域的面積為3,則z=x+y的最大值為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案