已知直線l:x-y+4=0與圓C:(x-1)2+(y-1)2=2,則圓C上各點(diǎn)到l距離的最小值為________,最大值為________.

 

3

【解析】由圓的標(biāo)準(zhǔn)方程得圓的圓心C(1,1),半徑長(zhǎng)r=,則圓心C(1,1)到直線l的距離d==2>=r,所以直線l與圓C相離,

則圓C上各點(diǎn)到l距離的最小值為d-r=2,最大值為d+r=2=3.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-8曲線與方程(解析版) 題型:解答題

如圖,曲線C1是以原點(diǎn)O為中心,F(xiàn)1,F(xiàn)2為焦點(diǎn)的橢圓的一部分.曲線C2是以O(shè)為頂點(diǎn),F(xiàn)2為焦點(diǎn)的拋物線的一部分,A是曲線C1和C2的交點(diǎn)且∠AF2F1為鈍角,若|AF1|=,|AF2|=

(1)求曲線C1和C2的方程;

(2)設(shè)點(diǎn)C是C2上一點(diǎn),若|CF1|=|CF2|,求△CF1F2的面積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-6雙曲線(解析版) 題型:選擇題

設(shè)F1,F(xiàn)2分別為雙曲線=1(a>0,b>0)的左,右焦點(diǎn),若在雙曲線右支上存在一點(diǎn)P,滿足|PF2|=|F1F2|,且點(diǎn)F2到直線PF1的距離等于雙曲線的實(shí)軸長(zhǎng),則該雙曲線的離心率e為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-5橢圓(解析版) 題型:選擇題

橢圓=1(a>b>0)的左頂點(diǎn)為A,左、右焦點(diǎn)分別為F1,F(xiàn)2,D是它短軸上的一個(gè)端點(diǎn),若3+2,則該橢圓的離心率為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:選擇題

直線ax+by+c=0與圓x2+y2=9相交于兩點(diǎn)M、N,若c2=a2+b2,則·(O為坐標(biāo)原點(diǎn))等于(  )

A.-7 B.-14 C.7 D.14

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:選擇題

已知直線l過點(diǎn)(-2,0),當(dāng)直線l與圓x2+y2=2x有兩個(gè)交點(diǎn)時(shí),其斜率k的取值范圍是(  )

A.(-2,2) B.(-,)

C.(-) D.(-,)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-3圓的方程(解析版) 題型:解答題

已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點(diǎn),且在y軸上截得的線段長(zhǎng)為4,半徑小于5.

(1)求直線PQ與圓C的方程;

(2)若直線l∥PQ,且l與圓C交于點(diǎn)A,B,且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-2直線的交點(diǎn)坐標(biāo)與距離公式(解析版) 題型:解答題

已知直線l經(jīng)過直線2x+y-5=0與x-2y=0的交點(diǎn).

(1)點(diǎn)A(5,0)到l的距離為3,求l的方程;

(2)求點(diǎn)A(5,0)到l的距離的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-6空間向量及運(yùn)算(解析版) 題型:解答題

如圖,在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1中,G為△BC1D的重心,

(1)求證:A1、G、C三點(diǎn)共線;

(2)求證:A1C⊥平面BC1D;

(3)求點(diǎn)C到平面BC1D的距離.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案