18.某高中有甲乙兩個班級進行數(shù)學考試,按照大于或等于90分為優(yōu)秀,90分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表:
優(yōu)秀非優(yōu)秀總計
甲班104555
乙班203055
合計3075105
(1)請完成上面的列聯(lián)表;
(2)根據列聯(lián)表的數(shù)據,能否在犯錯誤的概率不超過0.05的前提下認為成績與班級有關系?
參考公式:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}(其中n=a+b+c+d$為樣本容量)
隨機變量K2的概率分布:
p(K2≥k)0.250.150.100.050.0250.0100.0050.001
k1.3232.0722.7063.8415.0246.6357.87910.828

分析 (1)根據列聯(lián)表各數(shù)據之間的關系求出未知空的數(shù)據;
(2)根據公式計算相關指數(shù)K2的觀測值,比較臨界值的大小,可判斷成績與班級有關系的可靠性程度.

解答 解:(1)列聯(lián)表如下:

優(yōu)秀非優(yōu)秀總計
甲班104555
乙班203050
合計3075105
(2)假設成績與班級沒有關系,
根據列聯(lián)表中的數(shù)據,得到K2=$\frac{105×(10×30-20×45)^{2}}{55×50×30×75}$≈6.109>3.841,
因此有95%的把握認為“成績與班級有關系”.

點評 本題考查了列聯(lián)表及利用列聯(lián)表進行獨立性檢驗的思想方法,熟練掌握獨立性檢驗的思想方法是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.已知定義在R上的偶函數(shù)f(x)滿足f(x+4)=f(x)+f(2),且當x∈[0,2]時函數(shù)f(x)單調遞減,給出下列四個命題中正確的是①②④.
①f(2)=0;
②x=-4為函數(shù)f(x)的一條對稱軸;
③函數(shù)f(x)在[8,10]上單調遞增;
④若方程f(x)=m在區(qū)間[-6,-2]上的兩根為x1,x2,則x1+x2=-8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.點P是曲線y=x2上任意一點,則點P到直線y=2x-2的最小距離為$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖,F(xiàn)1,F(xiàn)2是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右兩焦點,點P在橢圓C上,線段PF2與圓x2+y2=b2相切于點Q,且點Q是線段PF2的中點,則${\frac{{{a^2}+{e^2}}}{3b}^{\;}}$(e為橢圓的離心率)的最小值為$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知等比數(shù)列{an}滿足2a3+a5=3a4,且a3+2是a2與a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)設bn=$\frac{{a}_{n}}{{(a}_{n}-1){(a}_{n+1}-1)}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.由曲線y=x2與直線y=x+2所圍成的平面圖形的面積為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設各項均為正數(shù)的等差數(shù)列{an}的前n項和為Sn,且滿足a1a2=35,a1a3=45,則S10=140.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,已知菱形ABCD與直角梯形ABEF所在的平面互相垂直,其中BE∥AF,AB⊥AF,AB=BE=$\frac{1}{2}$AF=2,∠CBA=$\frac{π}{3}$,P為DF的中點.
(Ⅰ)求證:PE∥平面ABCD
(Ⅱ)求二角D-EF-A的余弦值;
(Ⅲ)設G為線段AD上一點,$\overrightarrow{AG}=λ\overrightarrow{AD}$,若直線FG與平面ABEF所成角的正弦值為$\frac{\sqrt{39}}{26}$,求AG的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知三棱錐S-ABC,滿足SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC=3,則該三棱錐外接球的表面積為(  )
A.4$\sqrt{3}$πB.$\frac{27\sqrt{3}π}{2}$C.27πD.

查看答案和解析>>

同步練習冊答案