8.已知三棱錐S-ABC,滿足SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC=3,則該三棱錐外接球的表面積為( 。
A.4$\sqrt{3}$πB.$\frac{27\sqrt{3}π}{2}$C.27πD.

分析 把該三棱錐補成正方體,則正方體的對角線是外接球的直徑,
求出半徑,計算它的表面積.

解答 解:將該三棱錐補成正方體,如圖所示;
根據(jù)題意,2R=$\sqrt{{3}^{2}×3}$,
解得R=$\frac{3\sqrt{3}}{2}$;
∴該三棱錐外接球的表面積為
S=4πR2=4π•${(\frac{3\sqrt{3}}{2})}^{2}$=27π.
故選:C.

點評 本題考查了幾何體的外接球表面積的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某高中有甲乙兩個班級進行數(shù)學(xué)考試,按照大于或等于90分為優(yōu)秀,90分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表:
優(yōu)秀非優(yōu)秀總計
甲班104555
乙班203055
合計3075105
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),能否在犯錯誤的概率不超過0.05的前提下認為成績與班級有關(guān)系?
參考公式:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}(其中n=a+b+c+d$為樣本容量)
隨機變量K2的概率分布:
p(K2≥k)0.250.150.100.050.0250.0100.0050.001
k1.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在等比數(shù)列{an}中,a1=2,an=-64,Sn=-42,則公比q等于-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x-b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖所示是某幾何體的三視圖,則該幾何體的體積是( 。
A.3$\sqrt{3}$B.4$\sqrt{3}$C.6$\sqrt{3}$D.9$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,且過點(-1,$\frac{3}{2}$),橢圓C的右焦點為A,點B的坐標為($\frac{1}{2}$,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知縱坐標不同的兩點P,Q為橢圓C上的兩個點,且B、P、Q三點共線,線段PQ的中點為R,求直線AR的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如果函數(shù)f(x)=3sin(2x+ϕ)的圖象關(guān)于直線$x=\frac{2}{3}π$對稱,那么|φ|的最小值為(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某校舉行了以“重溫時代經(jīng)典,唱響回聲嘹亮”為主題的“紅歌”歌詠比賽.該校高一年級有1,2,3,4四個班參加了比賽,其中有兩個班獲獎.比賽結(jié)果揭曉之前,甲同學(xué)說:“兩個獲獎班級在2班、3班、4班中”,乙同學(xué)說:“2班沒有獲獎,3班獲獎了”,丙同學(xué)說:“1班、4班中有且只有一個班獲獎”,丁同學(xué)說:“乙說得對”.已知這四人中有且只有兩人的說法是正確的,則這兩人是(  )
A.乙,丁B.甲,丙C.甲,丁D.乙,丙

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.請推導(dǎo)等差數(shù)列及等比數(shù)列前n項和公式.

查看答案和解析>>

同步練習(xí)冊答案