A. | 滿足λ+μ=2的點(diǎn)P必為BC的中點(diǎn) | B. | 滿足λ+μ=1的點(diǎn)P有且只有一個(gè) | ||
C. | 滿足λ+μ=a(a>0)的點(diǎn)P最多有3個(gè) | D. | λ+μ的最大值為3 |
分析 可分別以AB,AD所在直線為x軸,y軸,建立平面直角坐標(biāo)系,并設(shè)正方形邊長(zhǎng)為1,P(x,y),x,y∈[0,1],可求A,B,E三點(diǎn)坐標(biāo),從而可寫(xiě)出向量$\overrightarrow{AP},\overrightarrow{AB},\overrightarrow{AE}$的坐標(biāo),帶入$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AE}$便可得到(x,y)=(λ-μ,μ),從而得到$λ+μ=\left\{\begin{array}{l}{x}&{y=0}\\{1+2y}&{x=1}\\{x+2}&{y=1}\\{2y}&{x=0}\end{array}\right.$,這樣便可判斷每個(gè)選項(xiàng)的正誤,從而得出正確選項(xiàng).
解答 解:以AB,AD所在直線分別為x,y軸,建立如圖所示平面直角坐標(biāo)系,
設(shè)正方形邊長(zhǎng)為1,P(x,y),則:
A(0,0),B(1,0),E(-1,1);
∴$\overrightarrow{AP}=(x,y),\overrightarrow{AB}=(1,0),\overrightarrow{AE}(-1,1)$;
∴由$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AE}$得,(x,y)=(λ-μ,μ);
∴$λ+μ=x+2y=\left\{\begin{array}{l}{x}&{y=0}\\{1+2y}&{x=1}\\{x+2}&{y=1}\\{2y}&{x=0}\end{array}\right.$;
∴滿足λ+μ=2的點(diǎn)P有線段BC的中點(diǎn)和D點(diǎn);
滿足λ+μ=1的點(diǎn)P有B點(diǎn)和線段AD的中點(diǎn);
滿足λ+μ=a(a>0)的點(diǎn)最多有2個(gè);
x=1,y=1時(shí),λ+μ取最大值3.
故選D.
點(diǎn)評(píng) 考查通過(guò)建立平面直角坐標(biāo)系,利用坐標(biāo)解決向量問(wèn)題的方法,能求平面上點(diǎn)的坐標(biāo),根據(jù)點(diǎn)的坐標(biāo)可求向量的坐標(biāo),以及向量數(shù)乘的坐標(biāo)運(yùn)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{10}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{f(e)}{e+1}$>$\frac{f(π)}{π+1}$ | B. | $\frac{f(e)}{e+1}$<$\frac{f(π)}{π+1}$ | C. | $\frac{f(e)}{e+2}$>$\frac{f(π)}{π+2}$ | D. | $\frac{f(e)}{e+2}$<$\frac{f(π)}{π+2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | $\sqrt{5}$ | C. | $\frac{9}{2}$ | D. | $\frac{{3\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,-1) | B. | (1,2) | C. | (-1,+∞) | D. | (-ln2,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com