14.在區(qū)間[-1,1]上任取一個(gè)數(shù)a,則曲線y=x2+x在點(diǎn)x=a處的切線的傾斜角為銳角的概率為$\frac{3}{4}$.

分析 求得函數(shù)的導(dǎo)數(shù),可得曲線在x=a處切線的斜率,由題意可得斜率大于0,解不等式可得a的范圍,再由幾何概率的公式,求出區(qū)間的長(zhǎng)度相除即可得到所求.

解答 解:y=x2+x導(dǎo)數(shù)為y′=2x+1,
則曲線y=x2+x在點(diǎn)x=a處的切線的斜率為k=2a+1,
傾斜角為銳角,即為2a+1>0,
解得a>-$\frac{1}{2}$,
由-1≤a≤1,可得-$\frac{1}{2}$<a≤1,
則切線的傾斜角為銳角的概率為$\frac{\frac{3}{2}}{2}$=$\frac{3}{4}$.
故答案為$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的應(yīng)用:求切線的斜率和傾斜角,考查不等式的解法,同時(shí)考查幾何概率的求法,注意運(yùn)用區(qū)間的長(zhǎng)度,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{a{x}^{2}}{{e}^{x}}$,直線y=$\frac{1}{e}$x為曲線y=f(x)的切線.
(1)求實(shí)數(shù)a的值;
(2)用min{m,n}表示m,n中的較小值,設(shè)函數(shù)g(x)=min{f(x),x-$\frac{1}{x}$}(x>0),若函數(shù)h(x)=g(x)-cx2為增函數(shù),求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2$\sqrt{3}sin(wx+\frac{π}{6})coswx$(0<w<2),且f(x)的圖象過點(diǎn)$(\frac{5π}{12},\frac{{\sqrt{3}}}{2})$.
(1)求w的值及函數(shù)f(x)的最小正周期;
(2)將y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=g(x)的圖象,已知$g(\frac{α}{2})=\frac{{5\sqrt{3}}}{6}$,求$cos(2α-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.向圖所示的邊長(zhǎng)為1的正方形區(qū)域內(nèi)任投一粒豆子,則該豆子落入陰影部分的概率為ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知點(diǎn)O是△ABC的內(nèi)心,∠BAC=60°,BC=1,則△BOC面積的最大值為$\frac{\sqrt{3}}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知sinθ+2cosθ=0,則$\frac{1+sin2θ}{{{{cos}^2}θ}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.直線l與函數(shù)y=cosx(x∈[-$\frac{π}{2}$,$\frac{π}{2}$])圖象相切于點(diǎn)A,且l∥CP,C(-$\frac{π}{2}$,0),P為圖象的極值點(diǎn),l與x軸交點(diǎn)為B,過切點(diǎn)A作AD⊥x軸,垂足為D,則$\overrightarrow{BA}•\overrightarrow{BD}$=$\frac{{π}^{2}-4}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若圓C:x2+y2+2x+2y-7=0關(guān)于直線ax+by+4=0對(duì)稱,由點(diǎn)P(a,b)向圓C作切線,切點(diǎn)為A,則線段PA的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)為定義在$(0,\frac{π}{2})$上的函數(shù),f'(x)是它的導(dǎo)函數(shù),且$\frac{f'(x)}{tanx}<f(x)$恒成立,則( 。
A.$f(\frac{π}{3})<\sqrt{3}f(\frac{π}{6})$B.$f(\frac{π}{6})<\sqrt{2}f(\frac{π}{4})$C.$f(\frac{π}{3})<f(\frac{π}{4})$D.$f(\frac{π}{4})<\sqrt{3}f(\frac{π}{3})$

查看答案和解析>>

同步練習(xí)冊(cè)答案