2.向圖所示的邊長(zhǎng)為1的正方形區(qū)域內(nèi)任投一粒豆子,則該豆子落入陰影部分的概率為ln2.

分析 根據(jù)積分的公式計(jì)算出區(qū)域的面積,利用幾何概型的概率公式即可得到結(jié)論.

解答 解:根據(jù)積分的幾何意義可知區(qū)域的面積S=${∫}_{0}^{1}\frac{1}{x+1}dx$=ln(x+1)${|}_{0}^{1}$=ln2,
區(qū)域D的面積為S1=1×1=1,
∴根據(jù)幾何概型的概率公式可知所求概率P=ln2,
故答案為ln2.

點(diǎn)評(píng) 本題主要考查幾何概型的概率計(jì)算,根據(jù)積分的幾何意義求出對(duì)應(yīng)區(qū)域的面積是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=(2a-1)x-$\frac{1}{2}$cos2x-a(sinx+cosx)在[0,$\frac{π}{2}$]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,$\frac{1}{3}$]B.[$\frac{1}{3}$,1]C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠ABC=60°,PA=PB=AB=2,點(diǎn)N為AB的中點(diǎn).,
(Ⅰ)證明:AB⊥PC;
(Ⅱ)設(shè)點(diǎn)M在線段PD上,且PB∥平面MNC,若平面PAB⊥平面ABCD,求二面角M-NC-P的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,且bcosC=(2a-c)cosB.
(1)求角B的大小;
(2)已知b=$\sqrt{3}$,BD為AC邊上的高,求BD的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.若$α,β∈[-\frac{π}{2},\frac{π}{2}]$,且αsinα-βsinβ>0,則下列關(guān)系式:①α>β;②α<β;③α+β>0;④α2>β2;⑤α2≤β2其中正確的序號(hào)是:④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若命題“?x∈(0,+∞),x+$\frac{1}{x}$≥m”是假命題,則實(shí)數(shù)m的取值范圍是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在區(qū)間[-1,1]上任取一個(gè)數(shù)a,則曲線y=x2+x在點(diǎn)x=a處的切線的傾斜角為銳角的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,若雙曲線上存在點(diǎn)P使∠PF2F1=120°,則離心率的取值范圍是( 。
A.(1,$\frac{{2\sqrt{3}}}{3}$)B.(1,2)C.(2,+∞)D.($\frac{{2\sqrt{3}}}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)非零向量$\overrightarrow a$與$\overrightarrow b$夾角是$\frac{2π}{3}$,且$|\overrightarrow a|=|\overrightarrow a+\overrightarrow b|$,則$\frac{|2\overrightarrow a+t\overrightarrow b|}{|\overrightarrow b|}$的最小值是$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案