【題目】已知函數(shù).

1)當(dāng)時,求的極值;

2)討論的單調(diào)性.

【答案】1)當(dāng)時,的極大值為9;當(dāng)時,的極小值為

2)①當(dāng)時,R是增函數(shù).

②當(dāng)時,的單調(diào)增區(qū)間為:,;

單調(diào)減區(qū)間為:

【解析】

(1)代入,求導(dǎo)后得,再列表分析各區(qū)間上導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性與極值即可.

(2)求導(dǎo)后再根據(jù)導(dǎo)函數(shù)有無零點討論a的取值,再求解導(dǎo)數(shù)大于零,得遞增區(qū)間,導(dǎo)數(shù)小于零得遞減區(qū)間.

解:(1)當(dāng)時,,則

,,

x,,的關(guān)系如下:

x

1

0

0

9

所以,當(dāng)時,的極大值為9;當(dāng)時,的極小值為

2,

,

①當(dāng)時,,且僅當(dāng),,所以R是增函數(shù),

②當(dāng)時,有兩個根,,,

當(dāng)時,得,所以的單調(diào)增區(qū)間為:,;

當(dāng)時,得,所以的單調(diào)減區(qū)間為:

綜上所述, ①當(dāng)時,R是增函數(shù).

②當(dāng)時,的單調(diào)增區(qū)間為:,

單調(diào)減區(qū)間為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱柱中,的中點,點在側(cè)棱上,平面

(1) 證明:的中點;

(2) 設(shè),四邊形為邊長為4正方形,四邊形為矩形,且異面直線所成的角為,求該三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】東西向的鐵路上有兩個道口、,鐵路兩側(cè)的公路分布如圖,位于的南偏西,且位于的南偏東方向,位于的正北方向,,處一輛救護(hù)車欲通過道口前往處的醫(yī)院送病人,發(fā)現(xiàn)北偏東方向的處(火車頭位置)有一列火車自東向西駛來,若火車通過每個道口都需要分鐘,救護(hù)車和火車的速度均為.

1)判斷救護(hù)車通過道口是否會受火車影響,并說明理由;

2)為了盡快將病人送到醫(yī)院,救護(hù)車應(yīng)選擇、中的哪個道口?通過計算說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四面體PABC的外接球的球心OAB上,且PO⊥平面ABC,2ACAB,若四面體PABC的體積為,則該球的體積為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列的前項和為,且函數(shù),若方程至少有三個實數(shù)根,則實數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,的中點,將沿直線翻折成,連結(jié),的中點,則在翻折過程中,下列說法中所有正確的是(

A.存在某個位置,使得

B.翻折過程中,的長是定值

C.,則

D.,當(dāng)三棱錐的體積最大時,三棱錐的外接球的表面積是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三個內(nèi)角,,所對的邊分別為,設(shè).

1)若,求的夾角

2)若,求周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某濕地公園的鳥瞰圖是一個直角梯形,其中:,,,1千米,千米,公園內(nèi)有一個形狀是扇形的天然湖泊,扇形長為半徑,弧為湖岸,其余部分為灘地,B,D點是公園的進(jìn)出口.公園管理方計劃在進(jìn)出口之間建造一條觀光步行道:線段線段,其中Q在線段上(異于線段端點),與弧相切于P點(異于弧端點]根據(jù)市場行情,段的建造費用是每千米10萬元,湖岸段弧的建造費用是每千米萬元(步行道的寬度不計),設(shè)弧度觀光步行道的建造費用為萬元.

1)求步行道的建造費用關(guān)于的函數(shù)關(guān)系式,并求其走義域;

2)當(dāng)為何值時,步行道的建造費用最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD中,底面ABCD是矩形,PA⊥底面ABCD,PAAB1,AD,點FPB的中點,點E在邊BC上移動.

(1)EBC的中點時,試判斷EF與平面PAC的位置關(guān)系,并說明理由;

(2)求證:無論點EBC邊的何處,都有;

(3)當(dāng)為何值時,與平面所成角的大小為45°.

查看答案和解析>>

同步練習(xí)冊答案