分析 (Ⅰ) 令PD中點(diǎn)為F,連接EF,由已知條件推導(dǎo)出四邊形FABE為平行四邊形,由此能證明BE∥面PAD.
(Ⅱ)利用等體積方法,即可求點(diǎn)C到平面BDE的距離.
解答 (Ⅰ) 證明:令PD中點(diǎn)為F,連接EF,…(1分)
∵點(diǎn)E,F(xiàn)分別是△PCD的中點(diǎn),
∴EF平行且等于12CD,∴EF平行且等于AB.
∴四邊形FABE為平行四邊形.…(2分)
∴BE∥AF,AF?平面PAD,EF?平面PAD…(4分)
∴BE∥面PAD…(5分)
(Ⅱ)解:由題意,平面PAD⊥平面ABCD,∠DAB=90°,∴AB⊥平面PAD,
∴AB⊥PA,
∵PA⊥BC,AB∩BC=B,
∴PA⊥平面ABCD,∴PD=2√2,BE=AF=√2,DB=√5,
△PCD中,PD=2√2,CD=2,PC=2√5−2=2√3,
∴4DE2+12=2(8+4),∴DE=√3,∴DE⊥BE,∴S△BDE=12×√3×√2=√62,
設(shè)點(diǎn)C到平面BDE的距離為h,則13×√62h=13×12×2×2×1,∴h=2√63.…(10分)
點(diǎn)評(píng) 本題考查直線與平面平行的證明,考查點(diǎn)C到平面BDE的距離的求法,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 76,75,56 | B. | 76,75,53 | C. | 77,75,56 | D. | 75,77,53 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | √24 | B. | √28 | C. | √212 | D. | √216 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | ±4 | C. | 4√3 | D. | ±4√3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [13,√33] | B. | [13,+∞) | C. | [√33,+∞) | D. | [-√33,√33] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com