【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),

(1)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;

(2)已知,,若對任意都成立,求的最大值;

(3)設(shè),若存在,使得成立,求的取值范圍.

【答案】(1) 見解析(2) (3)

【解析】

(1),討論a,確定單調(diào)性即可;(2)由(1)得,,對任意都成立,得,構(gòu)造函數(shù),(),求導(dǎo)求其最值即可求解;(3)設(shè),即

題設(shè)等價于函數(shù)有零點時的的取值范圍,利用零點存在定理求解即可

(1)由,知

,則恒成立,所以上單調(diào)遞增;

,令,得,

當(dāng)時,,當(dāng)時,,

所以上單調(diào)遞減;在上單調(diào)遞增.

綜上,增區(qū)間是,無減區(qū)間

,增區(qū)間是,減區(qū)間是

(2)由(1)知,當(dāng)時,

因為對任意都成立,所以

所以

設(shè),(),由

,得,

當(dāng)時,,所以上單調(diào)遞增;

當(dāng)時,,所以上單調(diào)遞減,

所以處取最大值,且最大值為

所以,當(dāng)且僅當(dāng),時,取得最大值為

(3)設(shè),即

題設(shè)等價于函數(shù)有零點時的的取值范圍.

① 當(dāng)時,由,,所以有零點.

② 當(dāng)時,若,由,得

,設(shè)h(x)=故h(x)單增,所以h(x)> h(0)=0,所以無零點.

③ 當(dāng)時,,

又存在,,所以有零點.

綜上,的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

(Ⅰ)求的值;

(Ⅱ)求函數(shù)上的單調(diào)區(qū)間;

(Ⅲ)若對任意都有,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高老師需要用五點法畫函數(shù)在一個周期內(nèi)的圖像,此時的高老師已經(jīng)將部分?jǐn)?shù)據(jù)填入表格,如下表:

0

a=?

0

5

0

-5

b=?

0

1)請同學(xué)們幫助高老師寫出表格中的兩個未知量ab的值,并根據(jù)表格所給信息寫出函數(shù)解析式(只需在答題卡的相應(yīng)位置填寫答案,無需寫出解析過程);

2)將圖像上所有點向左平行移動個單位長度,得到圖像,求距離原點O最近的對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差/攝氏度

10

11

13

12

8

發(fā)芽數(shù)/顆

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天的數(shù)據(jù)的概率;

(2)若選取的是12月1日與12月5日的2組數(shù)據(jù),請根據(jù)12月2日至4日的數(shù)據(jù),求出關(guān)于的線性回歸方程,由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

附:參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司擬購買一塊地皮建休閑公園,如圖,從公園入口沿方向修建兩條小路,休息亭與入口的距離為米(其中為正常數(shù)),過修建一條筆直的鵝卵石健身步行帶,步行帶交兩條小路于、處,已知,

(1)設(shè)米,米,求關(guān)于的函數(shù)關(guān)系式及定義域;

(2)試確定,的位置,使三條路圍成的三角形地皮購價最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重. 大氣污染可引起心悸、呼吸困難等心肺疾病。為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對入院50人進(jìn)行了問卷調(diào)查得到了如在的列聯(lián)表:已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為.

(Ⅰ)請將右面的列聯(lián)表補(bǔ)充完整;

患心肺疾病

不患心肺疾病

合計

5

10

合計

50

(Ⅱ)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;

(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.現(xiàn)在從患心肺疾病的10位女性中,選出3名進(jìn)行其他方面的排查,記選出患胃病的女性人數(shù)為,求的分布列以及數(shù)學(xué)期望.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式 其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線焦點為,直線經(jīng)過點且與拋物線相交于,兩點

(Ⅰ)若線段的中點在直線上,求直線的方程;

(Ⅱ)若線段,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從2名男生和2名女生中任意選擇兩人在星期六、星期日參加某公益活動,每天一人,則星期六安排一名男生、星期日安排一名女生的概率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】13分)設(shè){an}是公比為正數(shù)的等比數(shù)列a1=2,a3=a2+4

)求{an}的通項公式;

)設(shè){bn}是首項為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案