【題目】已知函數(shù)的部分圖象如圖所示.

(Ⅰ)求的值;

(Ⅱ)求函數(shù)上的單調(diào)區(qū)間;

(Ⅲ)若對任意都有,求實(shí)數(shù)m的取值范圍.

【答案】(Ⅰ);(Ⅱ)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(Ⅲ);

【解析】

()根據(jù)三角函數(shù)的部分圖象求出的值;

()()寫出函數(shù)的解析式,再求函數(shù)在,上的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;

()()求出函數(shù),的最大值和最小值,得出的最大值,從而求得的取值范圍.

()設(shè)函數(shù)的最小正周期為,

由圖可知,,所以,

,,所以;

,所以,

因?yàn)?/span>,所以,

所以,;

()(),,

因?yàn)楫?dāng)時(shí),,

所以當(dāng),時(shí),單調(diào)遞增;

當(dāng),時(shí),單調(diào)遞減;

當(dāng),時(shí),單調(diào)遞增.

所以函數(shù)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;

()()可知,函數(shù)的最大值為,最小值為,

所以對任意,都有,

且當(dāng),時(shí),取到最大值,

又因?yàn)閷θ我?/span>,都有成立,

所以,的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】節(jié)約資源和保護(hù)環(huán)境是中國的基本國策.某化工企業(yè),積極響應(yīng)國家要求,探索改良工藝,使排放的廢氣中含有的污染物數(shù)量逐漸減少.已知改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良后所排放的廢氣中含有的污染物數(shù)量為.設(shè)改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良工藝后所排放的廢氣中含有的污染物數(shù)量為,則第n次改良后所排放的廢氣中的污染物數(shù)量,可由函數(shù)模型給出,其中n是指改良工藝的次數(shù).

1)試求改良后所排放的廢氣中含有的污染物數(shù)量的函數(shù)模型;

2)依據(jù)國家環(huán)保要求,企業(yè)所排放的廢氣中含有的污染物數(shù)量不能超過,試問至少進(jìn)行多少次改良工藝后才能使得該企業(yè)所排放的廢氣中含有的污染物數(shù)量達(dá)標(biāo).

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】襄陽市擬在2021年奧體中心落成后申辦2026年湖北省省運(yùn)會(huì),據(jù)了解,目前武漢,宜昌,黃石等申辦城市因市民擔(dān)心賽事費(fèi)用超支而準(zhǔn)備相繼退出,某機(jī)構(gòu)為調(diào)查襄陽市市民對申辦省運(yùn)會(huì)的態(tài)度,選取某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計(jì)如下:

支持

不支持

合計(jì)

年齡不大于50

60

年齡大于50

10

合計(jì)

80

100

1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

2)能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為不同年齡與支持申辦省運(yùn)會(huì)無關(guān)?

附: , .

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人做試驗(yàn),從一個(gè)裝有標(biāo)號為12,3,4的小球的盒子中,無放回地取兩個(gè)小球,每次取一個(gè),先取的小球的標(biāo)號為,后取的小球的標(biāo)號為,這樣構(gòu)成有序?qū)崝?shù)對

1)寫出這個(gè)試驗(yàn)的所有結(jié)果;

2)求“第一次取出的小球上的標(biāo)號為”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從高三抽出名學(xué)生參加數(shù)學(xué)競賽,由成績得到如下的頻率分布直方圖.試?yán)妙l率分布直方圖求:

1)這名學(xué)生成績的眾數(shù)與中位數(shù);

2)這名學(xué)生的平均成績.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;

(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從分別寫有1,2,3,4的4張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國互聯(lián)網(wǎng)信息技術(shù)的發(fā)展,網(wǎng)絡(luò)購物已經(jīng)成為許多人消費(fèi)的一種重要方式,某市為了了解本市市民的網(wǎng)絡(luò)購物情況,特委托一家網(wǎng)絡(luò)公示進(jìn)行了網(wǎng)絡(luò)問卷調(diào)查,并從參與調(diào)查的10000名網(wǎng)民中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到了下表所示數(shù)據(jù):

經(jīng)常進(jìn)行網(wǎng)絡(luò)購物

偶爾或從不進(jìn)行網(wǎng)絡(luò)購物

合計(jì)

男性

50

50

100

女性

60

40

100

合計(jì)

110

90

200

(1)依據(jù)上述數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為該市市民進(jìn)行網(wǎng)絡(luò)購物的情況與性別有關(guān)?

(2)現(xiàn)從所抽取的女性網(wǎng)民中利用分層抽樣的方法再抽取人,從這人中隨機(jī)選出人贈(zèng)送網(wǎng)絡(luò)優(yōu)惠券,求出選出的人中至少有兩人是經(jīng)常進(jìn)行網(wǎng)絡(luò)購物的概率;

(3)將頻率視為概率,從該市所有的參與調(diào)查的網(wǎng)民中隨機(jī)抽取人贈(zèng)送禮物,記經(jīng)常進(jìn)行網(wǎng)絡(luò)購物的人數(shù)為,求的期望和方差.

附:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),

(1)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;

(2)已知,,若對任意都成立,求的最大值;

(3)設(shè),若存在,使得成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案