分析 令g(x)=f(x)-t=ax2-2x-t=a(x-$\frac{1}{a}$)2-$\frac{1}{a}$-t,利用|f(x)-t|≤5對任意的x∈[0,2]恒成立,可得|-$\frac{1}{a}$-t|≤5,|-t|≤5,|4a-4-t|≤5,即可求出a的取值范圍.
解答 解:令g(x)=f(x)-t=ax2-2x-t=a(x-$\frac{1}{a}$)2-$\frac{1}{a}$-t,
∵|f(x)-t|≤5對任意的x∈[0,2]恒成立,
∴|-$\frac{1}{a}$-t|≤5,|-t|≤5,|4a-4-t|≤5,
∵a>0,
∴$\frac{1}{5}$≤a≤$\frac{4}{9}$.
故答案為:$\frac{1}{5}$≤a≤$\frac{4}{9}$.
點(diǎn)評 本題考查恒成立問題,考查學(xué)生解不等式的能力,考查學(xué)生分析解決問題的能力,正確轉(zhuǎn)化是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “?a∈R,方程ax2-2x+a=0有正實根”的否定為“?a∈R,方程ax2-2x+a=0有負(fù)實數(shù)” | |
B. | 命題“a、b∈R,若a2+b2=0,則a=b=0”的逆否命題是“a、b∈R,若a≠0,且b≠0,則a2+b2≠0” | |
C. | 命題p:若回歸方程為$\stackrel{∧}{y}$-x=1,則y與x負(fù)相關(guān);命題q:數(shù)據(jù)1,2,3,4的中位數(shù)是2或3,則命題p∨q為真命題 | |
D. | 若X~N(1,4),則P(X<t2-1)=P(X>2t)成立的一個充分不必要條件t=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | $-\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{3}$-1 | D. | 2$\sqrt{3}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$+$\frac{5}{2}$i | B. | $\frac{1}{2}$-$\frac{5}{2}$i | C. | $\frac{1}{2}$+2i | D. | $\frac{1}{2}$-2i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com