【題目】已知函數(shù)().
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖象在點處的切線的傾斜角為,且函數(shù)()當(dāng)且僅當(dāng)在處取得極值,其中為的導(dǎo)函數(shù),求的取值范圍.
【答案】(1)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2).
【解析】
(1)對函數(shù)求導(dǎo),當(dāng)時,分別令與,即可求得函數(shù)的單調(diào)區(qū)間;(2)由函數(shù)的圖象在點處的切線的傾斜角為推出,即,再根據(jù)在處取得極值,則,從而可得,根據(jù) 當(dāng)且僅當(dāng)在處取得極值,對進行討論,即可求得的取值范圍.
(1)(),當(dāng)時,令得,令得,故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
(2)由題意可知,即;
所以,所以,因為在處有極值,故,從而可得,則,又因為僅在處有極值,所以在上恒成立,
當(dāng)時,由,顯然,使得,所以不成立,
當(dāng)且時,恒成立,所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點,點C的坐標(biāo)為(0,1).當(dāng)m變化時,解答下列問題:
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A,B,C三點的圓在y軸上截得的弦長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各項均為正數(shù)的數(shù)列的前項和為,且滿足,,.各項均為正數(shù)的等比數(shù)列滿足,.
(1)求數(shù)列、的通項公式;
(2)若,數(shù)列的前項和.
①求;
②若對任意,,均有恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:“我與丙的卡片上相同的數(shù)字不是1”,丙說:“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
在如圖所示的多面體中,四邊形和都為矩形。
(Ⅰ)若,證明:直線平面;
(Ⅱ)設(shè), 分別是線段, 的中點,在線段上是否存在一點,使直線平面?請證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(II) 當(dāng)時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上一點到其焦點的距離為.
(1)求與的值;
(2)若斜率為的直線與拋物線交于、兩點,點為拋物線上一點,其橫坐標(biāo)為1,記直線的斜率為,直線的斜率為,試問:是否為定值?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開展《中國漢字聽寫大會》的活動.為響應(yīng)學(xué)校號召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績畫出莖葉圖,如圖所示(把頻率當(dāng)作概率).
(1)求甲、乙兩人成績的平均數(shù)和中位數(shù);
(2)現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計學(xué)的角度,你認為派哪位學(xué)生參加比較合適?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com