4.執(zhí)行如圖所示程序框圖,若輸入的x=1,則輸出的a,b的值依次是(  )
A.2,0B.0,2C.-1,-1D.1,1

分析 將x=1代入題目所給的程序框圖,走到當(dāng)型循環(huán)后,根據(jù)得到的結(jié)果與所給的條件相比較從而確定從哪一個(gè)出口走,直到循環(huán)完成為止,從而得解.

解答 解:模擬程序的運(yùn)行,根據(jù)流程圖的順序,可得
x=1
a=2
b=0
滿足條件a>b,從“是”這一出口走,c=2,a=0,b=2
輸出a,b的值分別為:0,2.
故選:B.

點(diǎn)評(píng) 本題主要考查循環(huán)結(jié)構(gòu)中的當(dāng)型循環(huán)(先判斷后循環(huán)),解題中要判斷準(zhǔn)確,循環(huán)時(shí)要多加細(xì)心,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.將下列式子進(jìn)行合一變形.
(1)$\sqrt{3}$sinx+cosx=2sin(x+$\frac{π}{6}$);
(2)sinx-$\sqrt{3}$cosx=2sin(x-$\frac{π}{3}$);
(3)sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合P={x|x(x-2)<0,且x∈Z},Q={x|x2-3x+2=0},則P∩Q=( 。
A.PB.QC.{2}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.?dāng)?shù)列{an}的前n項(xiàng)和為An=n2+bn,數(shù)列{bn}是等比數(shù)列,公比q>0,且滿足a1=b1=2,b2,a3,b3成等差數(shù)列;
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若數(shù)列{cn}滿足cn=bn+$\frac{1}{A_n}$,求cn的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知平面向量$\vec a$,$\vec b$,$\vec e$滿足|$\vec e}$|=1,$\vec a$•$\vec e$=2,$\vec b$•$\vec e$=3,|$\vec a$-$\vec b}$|=$\sqrt{5}$,則$\vec a$•$\vec b$的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\frac{1}{2}$ax2+b,若x∈[-2,2]時(shí),恒有|f(x)|≤1,則ab的最大值是$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知△ABC是邊長(zhǎng)為1的等邊三角形,則($\overrightarrow{AB}$-2$\overrightarrow{BC}$)•(3$\overrightarrow{BC}$-4$\overrightarrow{AC}$)=( 。
A.-$\frac{13}{2}$B.-$\frac{11}{2}$C.-6-$\frac{{\sqrt{3}}}{2}$D.-6+$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,正方形ABCD所在平面與直角三角形ABE所在的平面相互垂直,AE⊥AB,設(shè)M,N分別是DE,AB的中點(diǎn),已知AB=2,AE=1.
(1)求證:MN∥平面BEC;
(2)求三棱錐N-BCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a,b,c為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,向量$\vec m$=(-1,$\sqrt{3}}$),$\vec n$=(cosA,sinA).若$\vec m$⊥$\vec n$,且acosB+bcosA=csinC,則角A,B的大小分別為( 。
A.$\frac{π}{6}$,$\frac{π}{3}$B.$\frac{2π}{3}$,$\frac{π}{6}$C.$\frac{π}{3}$,$\frac{π}{6}$D.$\frac{π}{3}$,$\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案