15.如圖,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于點(diǎn)C、D的點(diǎn),AE=3,圓O的直徑為9.
(1)求證:平面ABCD⊥平面ADE;
(2)求DE的長(zhǎng).

分析 (1)只需證明AE⊥CD.CD⊥AD,即可得CD⊥平面ADE.平面ABCD⊥平面ADE.
(2)可知CE為圓O的直徑,即CE=9,設(shè)正方形ABCD的邊長(zhǎng)為a,在Rt△CDE中,DE2=CE2-CD2=81-a2,在Rt△ADE中,DE2=AD2-AE2=a2-9,解得a=3$\sqrt{5}$.DE=6.

解答 解:(1)∵AE垂直于圓O所在平面,CD在圓O所在平面內(nèi),∴AE⊥CD.
在正方形ABCD中,CD⊥AD,
∵AD∩AE=A,∴CD⊥平面ADE.
∵CD?平面ABCD,∴平面ABCD⊥平面ADE.
(2)∵CD⊥平面ADE,DE?平面ADE,∴CD⊥DE.
∴CE為圓O的直徑,即CE=9.
設(shè)正方形ABCD的邊長(zhǎng)為a,
在Rt△CDE中,DE2=CE2-CD2=81-a2
在Rt△ADE中,DE2=AD2-AE2=a2-9,
由81-a2=a2-9,解得a=3$\sqrt{5}$.
∴DE=6.

點(diǎn)評(píng) 本題考查了空間面面位置關(guān)系的判定,考查了轉(zhuǎn)化思想,計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.對(duì)任意k∈R,直線y=klog2x-2總過(guò)一個(gè)定點(diǎn),該定點(diǎn)坐標(biāo)為( 。
A.(1,-2)B.(-1,2)C.(2,-1)D.(-2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知點(diǎn)P是△ABC內(nèi)一點(diǎn)(不包括邊界),且$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC}$,m,n∈R,則(m-2)2+(n-2)2的取值范圍是$(\frac{9}{2},8)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.$\int\begin{array}{l}1\\ 0\end{array}({e^x}+2x)dx$=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an}的前n項(xiàng)和Sn,且滿足Sn-Sn-1+2SnSn-1=0(n≥2),a1=$\frac{1}{2}$,則Sn=$\frac{1}{2n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)a>0,b>0,若3a與3b的等比中項(xiàng)是$\sqrt{3}$,則$\frac{1}{a}$+$\frac{4}$的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)$y=\sqrt{{{log}_{\frac{1}{2}}}({x^2}-2)}$的定義域是( 。
A.[-$\sqrt{3}$,$\sqrt{3}$]B.[-$\sqrt{3}$,-$\sqrt{2}$)∪($\sqrt{2}$,$\sqrt{3}$)C.[-3,-1)∪(1,3]D.[-$\sqrt{3}$,-$\sqrt{2}$)∪($\sqrt{2}$,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)求C${\;}_{n+1}^{m}$÷(C${\;}_{n}^{m}$+C${\;}_{n}^{m-1}$)(m,n∈N*)的值.
(2)用數(shù)學(xué)歸納法證明二項(xiàng)式定理:(a+b)n=C${\;}_{n}^{0}$an+C${\;}_{n}^{1}$an-1b+…+C${\;}_{n}^{r}$an-rbr+…+C${\;}_{n}^{n}$bn(n∈N*,r∈N,0≤r≤n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,且|F1F2|=4$\sqrt{3}$,M($\sqrt{3}$,-$\frac{\sqrt{13}}{2}$)是橢圓上一點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)過(guò)點(diǎn)N(-8,0)的直線與橢圓C相交于A,B兩點(diǎn),記△ABF1的面積為S,求S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案