【題目】設(shè)函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當(dāng)時(shí),討論的零點(diǎn)個(gè)數(shù).

【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析.

【解析】試題分析:(Ⅰ) 求出,分三種情況討論,分別令 得增區(qū)間, 得減區(qū)間;(Ⅱ) 由(Ⅰ)知上遞增, 上遞減, 上遞增,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,結(jié)合零點(diǎn)存在定理,可判定函數(shù)在, , 上各有一個(gè)零點(diǎn),即可得結(jié)果.

試題解析:(Ⅰ) .

①當(dāng)時(shí), ,當(dāng)時(shí), ,

當(dāng)時(shí), .當(dāng)時(shí), .∴遞增

②當(dāng)時(shí),令,得,此時(shí).

易知遞增, 遞減, 遞增

③當(dāng)時(shí), .易知遞增, 遞減, 遞增

(Ⅱ)當(dāng)時(shí),由(Ⅰ)知上遞增, 上遞減, 上遞增,

,將代入,

,∴.

下面證明 當(dāng)時(shí)存在,使.

首先,由不等式,∴,∴,∴.

考慮到

.

再令,可解出一個(gè)根為,

,∴,∴,就取.

則有.由零點(diǎn)存在定理及函數(shù)上的單調(diào)性,可知上有唯一的一個(gè)零點(diǎn).

,及的單調(diào)性,可知上有唯一零點(diǎn).

下面證明在上,存在,使,就取,則,

由不等式,則,即.

根據(jù)零點(diǎn)存在定理及函數(shù)單調(diào)性知上有一個(gè)零點(diǎn).

綜上可知, 當(dāng)時(shí),共有3個(gè)零點(diǎn).

【方法點(diǎn)晴】本題主要考查的是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)研究函數(shù)的最值、以及零點(diǎn)存在性定理,屬于難題.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的步驟:①確定函數(shù)的定義域;②對(duì)求導(dǎo);③令,解不等式得的范圍就是遞增區(qū)間;令,解不等式得的范圍就是遞減區(qū)間.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義平面向量之間的一種運(yùn)算“⊙”如下:對(duì)任意的 ,令 =mq-np,下面說(shuō)法錯(cuò)誤的是(
A.若 共線,則 =0
B. =
C.對(duì)任意的λ∈R,有 =
D.( 2+( 2=| |2| |2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某生態(tài)園將一塊三角形地的一角開(kāi)辟為水果園,已知角 的長(zhǎng)度均大于200米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆.

(1)若圍墻、總長(zhǎng)度為200米,如何可使得三角形地塊面積最大?

(2)已知竹籬笆長(zhǎng)為米, 段圍墻高1米, 段圍墻高2米,造價(jià)均為每平方米100元,若,求圍墻總造價(jià)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是圓上的任意一點(diǎn),點(diǎn)為圓的圓心,點(diǎn)與點(diǎn)關(guān)于平面直角系的坐標(biāo)原點(diǎn)對(duì)稱,線段的垂直平分線與線段交于點(diǎn).

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)若軌跡軸正半軸交于點(diǎn),直線交軌跡兩點(diǎn),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù))

(1)設(shè)過(guò)點(diǎn)的直線與曲線相切于點(diǎn),求的值;

(2)若函數(shù)的圖象與函數(shù)的圖象在內(nèi)有交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若不等式x2+ax+1≥0對(duì)一切x∈(0, ]成立,則a的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)對(duì)一切實(shí)數(shù)都有 成立,且.

(1)求的值;

(2)求的解析式;

(3)已知,設(shè):當(dāng)時(shí),不等式 恒成立;Q:當(dāng)時(shí),是單調(diào)函數(shù)。如果滿足成立的的集合記為,滿足Q成立的的集合記為,求A∩(CRB)(為全集).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列命題:

①在函數(shù)的圖象中,相鄰兩個(gè)對(duì)稱中心的距離為;②函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;③“ ”是“”的必要不充分條件;④已知命題:對(duì)任意的,都有,則是:存在,使得;⑤在中,若, ,則角等于.其中所有真命題的個(gè)數(shù)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

(Ⅰ)寫出直線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)曲線經(jīng)過(guò)伸縮變換得到曲線,若點(diǎn),直線交與, ,求, .

查看答案和解析>>

同步練習(xí)冊(cè)答案