精英家教網 > 高中數學 > 題目詳情

【題目】已知某種細菌的適宜生長溫度為12~27℃,為了研究該種細菌的繁殖數量(單位:個)隨溫度(單位:℃)變化的規(guī)律,收集數據如下:

溫度/

14

16

18

20

22

24

26

繁殖數量/

25

30

38

50

66

120

218

對數據進行初步處理后,得到了一些統計量的值,如表所示:

20

78

4.1

112

3.8

1590

20.5

其中,.

1)請繪出關于的散點圖,并根據散點圖判斷哪一個更適合作為該種細菌的繁殖數量關于溫度的回歸方程類型(給出判斷即可,不必說明理由);

2)根據(1)的判斷結果及表格數據,建立關于的回歸方程(結果精確到0.1);

3)當溫度為27℃時,該種細菌的繁殖數量的預報值為多少?

參考公式:對于一組數據,其回歸直線的斜率和截距的最小二成估計分別為,,參考數據:.

【答案】1)作圖見解析;更適合(23)預報值為245

【解析】

1)由散點圖即可得到答案;

2)把兩邊取自然對數,得,由 計算得到,再將代入可得,最終求得,即;

3)將代入中計算即可.

解:(1)繪出關于的散點圖,如圖所示:

由散點圖可知,更適合作為該種細菌的繁殖數量關于的回歸方程類型;

2)把兩邊取自然對數,得

.

,

關于的回歸方程為

3)當時,計算可得;

即溫度為27℃時,該種細菌的繁殖數量的預報值為245.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在直角梯形中,EF分別為AB的三等分點,,,若沿著FG,ED折疊使得點A,B重合,如圖2所示,連結GCBD

1)求證:平面平面BCDE;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某省從2021年開始將全面推行新高考制度,新高考“”中的“2”要求考生從政治、化學、生物、地理四門中選兩科,按照等級賦分計入高考成績,等級賦分規(guī)則如下:從2021年夏季高考開始,高考政治、化學、生物、地理四門等級考試科目的考生原始成績從高到低劃分為五個等級,確定各等級人數所占比例分別為,,,,等級考試科目成績計入考生總成績時,將等級內的考生原始成績,依照等比例轉換法分別轉換到、、五個分數區(qū)間,得到考生的等級分,等級轉換分滿分為100分.具體轉換分數區(qū)間如下表:

等級

比例

賦分區(qū)間

而等比例轉換法是通過公式計算:

其中分別表示原始分區(qū)間的最低分和最高分,、分別表示等級分區(qū)間的最低分和最高分,表示原始分,表示轉換分,當原始分為時,等級分分別為

假設小南的化學考試成績信息如下表:

考生科目

考試成績

成績等級

原始分區(qū)間

等級分區(qū)間

化學

75分

等級

設小南轉換后的等級成績?yōu)?/span>,根據公式得:,

所以(四舍五入取整),小南最終化學成績?yōu)?7分.

已知某年級學生有100人選了化學,以半期考試成績?yōu)樵汲煽冝D換本年級的化學等級成績,其中化學成績獲得等級的學生原始成績統計如下表:

成績

95

93

91

90

88

87

85

人數

1

2

3

2

3

2

2

(1)從化學成績獲得等級的學生中任取2名,求恰好有1名同學的等級成績不小于96分的概率;

(2)從化學成績獲得等級的學生中任取5名,設5名學生中等級成績不小于96分人數為,求的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一年之計在于春,一日之計在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個坑進行播種,每個坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨立.對每一個坑而言,如果至少有兩粒種子發(fā)芽,則不需要進行補播種,否則要補播種.

(1)當取何值時,有3個坑要補播種的概率最大?最大概率為多少?

(2)當時,用表示要補播種的坑的個數,求的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在開展學習強國的活動中,某校高三數學教師成立了黨員和非黨員兩個學習組,其中黨員學習組有4名男教師、1名女教師,非黨員學習組有2名男教師、2名女教師,高三數學組計劃從兩個學習組中隨機各選2名教師參加學校的挑戰(zhàn)答題比賽.

1)求選出的4名選手中恰好有一名女教師的選派方法數;

2)記X為選出的4名選手中女教師的人數,求X的概率分布和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

在直角坐標系中,曲線的參數方程為為參數),直線的參數方程為為參數).

(1)求的直角坐標方程;

(2)若曲線截直線所得線段的中點坐標為,求的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】根據氣象部門預報,在距離某個碼頭A南偏東45°方向的600km處的熱帶風暴中心B正以30km/h的速度向正北方向移動,距離風暴中心450km以內的地區(qū)都將受到影響,從現在起經過___小時后該碼頭A將受到熱帶風暴的影響(精確到0.01).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,為正三角形,平面平面,的中點,

1)求證:

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數滿足=1,則等于(

A.-B.C.-D.

查看答案和解析>>

同步練習冊答案