【題目】為發(fā)揮體育咋核心素養(yǎng)時代的獨(dú)特育人價值,越來越多的中學(xué)生已將某些體育項目納入到學(xué)生的必修課程,某中學(xué)計劃在高一年級開設(shè)游泳課程,為了解學(xué)生對游泳的興趣,某數(shù)學(xué)研究學(xué)習(xí)小組隨機(jī)從該校高一年級學(xué)生抽取了100人進(jìn)行調(diào)查.

一(1

一(2

一(3

一(4

一(5

一(6

一(7

一(8

一(9

一(10

市級比賽

獲獎人數(shù)

2

2

3

3

4

4

3

3

4

2

市級以上比

賽獲獎人數(shù)

2

2

1

0

2

3

3

2

1

2

1)已知在被抽取的女生中有6名高一(1)班學(xué)生,其中3名對游泳有興趣,現(xiàn)在從這6名學(xué)生中最忌抽取3人,求至少有2人對游泳有興趣的概率;

2)該研究性學(xué)習(xí)小組在調(diào)查發(fā)現(xiàn),對游泳有興趣的學(xué)生中有部分曾在市級以上游泳比賽中獲獎,如上表所示,若從高一(8)班和高一(9)班獲獎學(xué)生中隨機(jī)各抽取2人進(jìn)行跟蹤調(diào)查.記選中的4人中市級以上游泳比賽獲獎的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

【答案】1;(2)分布列見解析,

【解析】

1)利用互斥事件的概率公式計算所求事件的概率值;

2)由題意知隨機(jī)變量的所有可能取值,計算對應(yīng)的概率值,寫出分布列,求出數(shù)學(xué)期望值.

解:(1)記事件從這6名學(xué)生中隨機(jī)抽取的3人中恰好有i人有興趣,

從這6名學(xué)生中隨機(jī)抽取的3人中至少有2人有興趣,且互斥.

∴所求概率.

2)由題意,可知所有可能取值有0, 1,23.

,,.

所以的分布列是

0

1

2

3

P

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一款手游,頁面上有一系列的偽裝,其中隱藏了4個寶藏.如果你在規(guī)定的時間內(nèi)找到了這4個寶藏,將會彈出下一個頁面,這個頁面仍隱藏了2個寶藏,若能在規(guī)定的時間內(nèi)找到這2個寶藏,那么闖關(guān)成功,否則闖關(guān)失敗,結(jié)束游戲;如果你在規(guī)定的時間內(nèi)找到了3個寶藏,仍會彈出下一個頁面,但這個頁面隱藏了4個寶藏,若能在規(guī)定的時間內(nèi)找到這4個寶藏,那么闖關(guān)成功,否則闖關(guān)失敗,結(jié)束游戲;其它情況下,不會彈出下一個頁面,闖關(guān)失敗,并結(jié)束游戲.

假定你找到任何一個寶藏的概率為,且能否找到其它寶藏相互獨(dú)立..

1)求闖關(guān)成功的概率;

2)假定你付1Q幣游戲才能開始,能進(jìn)入下一個頁面就能獲得2Q幣的獎勵,闖關(guān)成功還能獲得另外4Q幣的獎勵,闖關(guān)失敗沒有額外的獎勵.求一局游戲結(jié)束,收益的Q幣個數(shù)X的數(shù)學(xué)期望(收益=收入-支出).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“隨機(jī)模擬方法”計算曲線與直線所圍成的曲邊三角形的面積時,用計算機(jī)分別產(chǎn)生了10個在區(qū)間[1,e]上的均勻隨機(jī)數(shù)xi10個在區(qū)間[0,1]上的均勻隨機(jī)數(shù),其數(shù)據(jù)如下表的前兩行.

x

2.50

1.01

1.90

1.22

2.52

2.17

1.89

1.96

1.36

2.22

y

0.84

0.25

0.98

0.15

0.01

0.60

0.59

0.88

0.84

0.10

lnx

0.90

0.01

0.64

0.20

0.92

0.77

0.64

0.67

0.31

0.80

由此可得這個曲邊三角形面積的一個近似值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為α為參數(shù),直線ly=kxk0),以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求曲線C的極坐標(biāo)方程;

(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),求|OA||OB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別是,橢圓上短軸的一個端點(diǎn)與兩個焦點(diǎn)構(gòu)成的三角形的面積為;

(1)求橢圓的方程;

(2)過作垂直于軸的直線交橢圓兩點(diǎn)(點(diǎn)在第二象限),是橢圓上位于直線兩側(cè)的動點(diǎn),若,求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間和極值;

2)若,試討論函數(shù)的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知多面體的底面是邊長為的菱形, 底面, ,且.

(1)證明:平面平面;

(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年,新冠狀肺炎疫情牽動每一個中國人的心,危難時刻眾志成城,共克時艱,為疫區(qū)助力.福建省漳州市東山縣共101個海鮮商家及個人為緩解武漢物質(zhì)壓力,募捐價值百萬的海鮮輸送武漢.東山島,別稱陵島,形似蝴蝶亦稱蝶島,隸屬于福建省漳州市東山縣,是福建省第二大島,中國第七大島,介于廈門市和廣東省汕頭之間,東南是著名的閩南漁場和粵東漁場交匯處,因地理位置發(fā)展海產(chǎn)品養(yǎng)殖業(yè)具有得天獨(dú)厚的優(yōu)勢.根據(jù)養(yǎng)殖規(guī)模與以往的養(yǎng)殖經(jīng)驗,某海鮮商家的海產(chǎn)品每只質(zhì)量(克)在正常環(huán)境下服從正態(tài)分布

1)隨機(jī)購買10只該商家的海產(chǎn)品,求至少買到一只質(zhì)量小于265克該海產(chǎn)品的概率;

22020年該商家考慮增加先進(jìn)養(yǎng)殖技術(shù)投入,該商家欲預(yù)測先進(jìn)養(yǎng)殖技術(shù)投入為49千元時的年收益增量.現(xiàn)用以往的先進(jìn)養(yǎng)殖技術(shù)投入(千元)與年收益增量(千元).的數(shù)據(jù)繪制散點(diǎn)圖,由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線的附近,且,,其中.根據(jù)所給的統(tǒng)計量,求y關(guān)于x的回歸方程,并預(yù)測先進(jìn)養(yǎng)殖技術(shù)投入為49千元時的年收益增量.

附:若隨機(jī)變量,則;

對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形和矩形所在平面垂直,其中為棱的中點(diǎn),的中點(diǎn).

1)求證:;

2)若點(diǎn)到平面的距離是,求多面體的體積.

查看答案和解析>>

同步練習(xí)冊答案