數(shù)列中,,(是常數(shù),),且成公比不為的等比數(shù)列.
(Ⅰ)求的值;
(Ⅱ)求的通項(xiàng)公式.
(Ⅰ)(Ⅱ)
解析試題分析:(I),,,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fc/6/1eftq4.png" style="vertical-align:middle;" />,,成等比數(shù)列,所以,解得或.
當(dāng)時(shí),,不符合題意舍去,故.
(II)當(dāng)時(shí),由于,,……,
所以.
又,,故.
當(dāng)n=1時(shí),上式也成立,所以
考點(diǎn):本小題主要考查等比數(shù)列的性質(zhì)、由數(shù)列的遞推關(guān)系式求數(shù)列的通項(xiàng)公式等.
點(diǎn)評(píng):由數(shù)列的遞推關(guān)系式求數(shù)列的通項(xiàng)公式時(shí),不要忘記驗(yàn)證n=1的情況.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列的首項(xiàng),公差.且分別是等比數(shù)列的.
(1)求數(shù)列與的通項(xiàng)公式;
(2)設(shè)數(shù)列對(duì)任意自然數(shù)均有 成立,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列的前項(xiàng)和為,.
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列是等差數(shù)列,且,.
⑴ 求數(shù)列的通項(xiàng)公式;
⑵ 令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an},其前n項(xiàng)和為Sn.
(1)若對(duì)任意的n∈N,a2n﹣1,a2n+1,a2n組成公差為4的等差數(shù)列,且,求n的值;
(2)若數(shù)列{}是公比為q(q≠﹣1)的等比數(shù)列,a為常數(shù),求證:數(shù)列{an}為等比數(shù)列的充要條件為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知單調(diào)遞增的等比數(shù)列{an}滿(mǎn)足:a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的正整數(shù)n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等比數(shù)列中,,公比.
(I)為的前n項(xiàng)和,證明:
(II)設(shè),求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是公差不為零的等差數(shù)列, 成等比數(shù)列.
求數(shù)列的通項(xiàng); 求數(shù)列的前n項(xiàng)和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com