11.已知向量$\overrightarrow a$,$\overrightarrow b$均為單位向量,$\overrightarrow a$與$\overrightarrow b$夾角均為$\frac{π}{3}$,則|${\overrightarrow a$-2$\overrightarrow b}$|=$\sqrt{3}$.

分析 根據(jù)向量的數(shù)量積公式計(jì)算即可.

解答 解:向量$\overrightarrow a$,$\overrightarrow b$均為單位向量,$\overrightarrow a$與$\overrightarrow b$夾角均為$\frac{π}{3}$,
則|${\overrightarrow a$-2$\overrightarrow b}$|2=|$\overrightarrow a$|2-4|$\overrightarrow{a}$|•|$\overrightarrow$|cos$\frac{π}{3}$+|4$\overrightarrow$|2=1-4×1×1×$\frac{1}{2}$+4×1=3,
∴|${\overrightarrow a$-2$\overrightarrow b}$|=$\sqrt{3}$
故答案為:$\sqrt{3}$

點(diǎn)評 本題考查向量的模長公式,涉及向量的數(shù)量積的運(yùn)算,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知一個(gè)盒子中裝有3個(gè)黑球和4個(gè)白球,現(xiàn)從該盒中摸出3個(gè)球,假設(shè)每個(gè)球被摸到的可能性相同.
(Ⅰ)若每次摸一個(gè)球,摸后不放回,求三次摸到的球的顏色依次為“白,黑,白”的概率;
(Ⅱ)設(shè)摸到的白球的個(gè)數(shù)為m,黑球的個(gè)數(shù)為n,令X=m-n,求X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.${(x+\frac{m}{{\sqrt{x}}})^6}$展開式中x3的系數(shù)為15,則實(shí)數(shù)m的值為±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)為定義在[-1,1]上的偶函數(shù),且在[0,1]上為單調(diào)遞增函數(shù),則f(2x+1)>f(${\frac{x}{2}$+1)的解集為[-1,-$\frac{4}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某幾何體的三視圖如圖所示,其中正視圖是邊長為1的正方形,俯視圖由兩個(gè)邊長為1的正方形組成,則此幾何體的體積是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知|$\overrightarrow a}$|=1,$\overrightarrow a$與$\overrightarrow b$的夾角是$\frac{π}{3}$,($\overrightarrow a+2\overrightarrow b$)•$\overrightarrow a$=3,則|$\overrightarrow b}$|的值是( 。
A.1B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知橢圓C:$\frac{{x{\;}^2}}{a^2}+\frac{{y{\;}^2}}{b^2}$=1(a>b>1)的離心率為$\frac{1}{2}$,點(diǎn)P(n,$\frac{3}{2}$)是橢圓C上一點(diǎn),F(xiàn)為橢圓C的左焦點(diǎn),若|PF|=$\frac{5}{2}$,則點(diǎn)Q(2n,0)到雙曲線$\frac{x^2}{3}-{y^2}$=1的一條漸近線的距離為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.焦點(diǎn)在y軸上的橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{6}$=1(a>0)的離心率是$\frac{{\sqrt{3}}}{3}$,則實(shí)數(shù)a為(  )
A.3B.2C.2或3D.4或9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,AB是⊙O的直徑,CB與⊙O相切于B,E為線段CB上一點(diǎn),連接AC、AE,分別交⊙O于D、G兩點(diǎn),連接DG交CB于點(diǎn)F.
(Ⅰ)求證:△CDF∽△GEF;
(Ⅱ)若E為CB的中點(diǎn),EG=1,GA=3,求線段CD的長.

查看答案和解析>>

同步練習(xí)冊答案