【題目】隨著“北京八分鐘”在韓國(guó)平昌冬奧會(huì)驚艷亮相,冬奧會(huì)正式進(jìn)入了北京周期,全社會(huì)對(duì)冬奧會(huì)的熱情空前高漲.
(1)為迎接冬奧會(huì),某社區(qū)積極推動(dòng)冬奧會(huì)項(xiàng)目在社區(qū)青少年中的普及,并統(tǒng)計(jì)了近五年來本社區(qū)冬奧項(xiàng)目青少年愛好者的人數(shù)(單位:人)與時(shí)間(單位:年),列表如下:
依據(jù)表格給出的數(shù)據(jù),是否可用線性回歸模型擬合與的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說明(計(jì)算結(jié)果精確到0.01).
(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式,參考數(shù)據(jù).
(2)某冰雪運(yùn)動(dòng)用品專營(yíng)店為吸引廣大冰雪愛好者,特推出兩種促銷方案.
方案一:每滿600元可減100元;
方案二:金額超過600元可抽獎(jiǎng)三次,每次中獎(jiǎng)的概率同為 ,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)1次打9折,中獎(jiǎng)2次打8折,中獎(jiǎng)3次打7折. v
兩位顧客都購(gòu)買了1050元的產(chǎn)品,并且都選擇第二種優(yōu)惠方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;
②如果你打算購(gòu)買1000元的冰雪運(yùn)動(dòng)用品,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)先求均值,再代入公式得r,最后與參考數(shù)據(jù)比較即可作出判斷,(2)①可以根據(jù)對(duì)立事件概率關(guān)系求解,即先求顧客沒有中獎(jiǎng)概率,再用1減即得結(jié)果,②先確定方案二中隨機(jī)變量取法,再分別求對(duì)應(yīng)概率,最后根據(jù)數(shù)學(xué)期望公式求期望,比較與方案一數(shù)值即可作出判斷.
試題解析:(1)由題知,,,,
∴
.
∴與的線性相關(guān)程度很高,可用線性回歸模型擬合.
(2)①選擇方案二比方案一更優(yōu)惠則需要至少中獎(jiǎng)一次,設(shè)顧客沒有中獎(jiǎng)為事件,則,
故所求概率為.
②若選擇方案一,則需付款元,
若選擇方案二,設(shè)付款元,則可能取值為700,800,900,1000.
;
;
;
.
∴元,
∵,∴選擇方案二更劃算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓的方程為,圓的方程為,若動(dòng)圓與圓內(nèi)切,與圓外切.
(Ⅰ)求動(dòng)圓圓心的軌跡的方程;
(Ⅱ)過直線上的點(diǎn)作圓的兩條切線,設(shè)切點(diǎn)分別是,,若直線與軌跡交于,兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-2ax-1+a,a∈R.
(1)若a=2,試求函數(shù)y=(x>0)的最小值;
(2)對(duì)于任意的x∈[0,2],不等式f(x)≤a成立,試求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長(zhǎng)。設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(單位:億元)的數(shù)據(jù)如下:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
儲(chǔ)蓄存款 | 3.4 | 3.6 | 4.5 | 4.9 | 5.5 | 6.1 | 7.0 |
(1)求關(guān)于的線性回歸方程;
(2)2018年城鄉(xiāng)居民儲(chǔ)蓄存款前五名中,有三男和兩女,F(xiàn)從這5人中隨機(jī)選出2人參加某訪談節(jié)目,求選中的2人性別不同的概率。
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校做了一次關(guān)于“感恩父母”的問卷調(diào)查,從8~10歲,11~12歲,13~14歲,15~16歲四個(gè)年齡段回收的問卷依次為:120份,180份,240份,x份.因調(diào)查需要,從回收的問卷中按年齡段分層抽取容量為300的樣本,其中在11~12歲學(xué)生問卷中抽取60份,則在15~16歲學(xué)生中抽取的問卷份數(shù)為( )
A.60 B.80 C.120 D.180
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某購(gòu)物中心為了了解顧客使用新推出的某購(gòu)物卡的顧客的年齡分布情況,隨機(jī)調(diào)查了位到購(gòu)物中心購(gòu)物的顧客年齡,并整理后畫出頻率分布直方圖如圖所示,年齡落在區(qū)間內(nèi)的頻率之比為.
(1) 求顧客年齡值落在區(qū)間內(nèi)的頻率;
(2) 擬利用分層抽樣從年齡在的顧客中選取人召開一個(gè)座談會(huì),現(xiàn)從這人中選出人,求這兩人在不同年齡組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,圓經(jīng)過橢圓的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn)在橢圓上,且,.
(Ⅰ)求橢圓的方程和點(diǎn)的坐標(biāo);
(Ⅱ)過點(diǎn)的直線與圓相交于、兩點(diǎn),過點(diǎn)與垂直的直線與橢圓相交于另一點(diǎn),求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求f[f(1)]的值;
(2)若f(x)>1,求x的取值范圍;
(3)判斷函數(shù)在(-2,+∞)上的單調(diào)性,并用定義加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com