A. | -1 | B. | 0 | C. | $\frac{1}{2}$ | D. | 2 |
分析 作出題中不等式組表示的平面區(qū)域,得如圖的△ABC及其內(nèi)部,再將目標函數(shù)z=x+2y對應(yīng)的直線進行平移,判斷最優(yōu)解,然后求解z取得的最大值.
解答 解:作出x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x+y≤0\\ y≥0\end{array}\right.$表示的平面區(qū)域,
得到如圖的三角形及其內(nèi)部,由$\left\{\begin{array}{l}{x-y+1=0}\\{x+y=0}\end{array}\right.$,
解得A(-$\frac{1}{2}$,$\frac{1}{2}$),
設(shè)z=F(x,y)=x+2y,將直線l:z=x+2y進行平移,
當l經(jīng)過點A時,目標函數(shù)z達到最大值
∴z最大值=F($-\frac{1}{2}$,$\frac{1}{2}$)=$\frac{1}{2}$.
故選:C.
點評 本題給出二元一次不等式組,求目標函數(shù)z=x+2y的最大值,著重考查了二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃等知識,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{5+i}{2}$ | B. | $\frac{-5+i}{2}$ | C. | $\frac{1+5i}{2}$ | D. | $\frac{1-5i}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com