【題目】隨著智能手機的普及,手機計步軟件迅速流行開來,這類軟件能自動記載每日健步走的步數(shù),從而為科學(xué)健身提供了一定幫助.某企業(yè)為了解員工每日健步走的情況,從該企業(yè)正常上班的員工中隨機抽取300名,統(tǒng)計他們的每日健步走的步數(shù)(均不低于4千步,不超過20千步).按步數(shù)分組,得到頻率分布直方圖如圖所示.
(1)求這300名員工日行步數(shù)(單位:千步)的樣本平均數(shù)(每組數(shù)據(jù)以該組區(qū)間的中點值為代表,結(jié)果保留整數(shù));
(2)由直方圖可以認(rèn)為該企業(yè)員工的日行步數(shù)(單位:千步)服從正態(tài)分布,其中為樣本平均數(shù),標(biāo)準(zhǔn)差的近似值為2,求該企業(yè)被抽取的300名員工中日行步數(shù)的人數(shù);
(3)用樣本估計總體,將頻率視為概率.若工會從該企業(yè)員工中隨機抽取2人作為“日行萬步”活動的慰問獎勵對象,規(guī)定:日行步數(shù)不超過8千步者為“不健康生活方式者”,給予精神鼓勵,獎勵金額為每人0元;日行步數(shù)為8~14千步者為“一般生活方式者”,獎勵金額為每人100元;日行步數(shù)為14千步以上者為“超健康生活方式者”,獎勵金額為每人200元.求工會慰問獎勵金額(單位:元)的分布列和數(shù)學(xué)期望.
附:若隨機變量服從正態(tài)分布,則,,.
【答案】(1) 12 (2) 47 (3) 分布列見解析,
【解析】
(1) 用每組數(shù)據(jù)中該組區(qū)間的中點值為代表,利用公式直接可求解.
(2)由題意得,求出即可求解出答案.
(3)由頻率分布直方圖可知每人獲得獎金額為0元的概率為0.02,每人獲得獎金額為100元的概率為:0.88,每人獲得獎金額為200元的概率為:,的取值為0,100,200,300,400.
分布求出概率,列出分布列,求出數(shù)學(xué)期望.
(1) 由題意有
(千步)
(2)由,由(1)得
所以
所以300名員工中日行步數(shù)的人數(shù):.
(3)由頻率分布直方圖可知:
每人獲得獎金額為0元的概率為:.
每人獲得獎金額為100元的概率為:
每人獲得獎金額為200元的概率為:
的取值為0,100,200,300,400.
所以的分布列為:
0 | 100 | 200 | 300 | 400 | |
0.0004 | 0.0352 | 0.7784 | 0.176 | 0.01 |
(元)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別過橢圓左、右焦點的動直線相交于點,與橢圓分別交于與不同四點,直線的斜率滿足.已知當(dāng)與軸重合時,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在定點,使得為定值?若存在,求出點坐標(biāo)并求出此定值;若不存在,說明理由.
【答案】(Ⅰ);(Ⅱ),和.
【解析】試題分析:(1)當(dāng)與軸重合時,垂直于軸,得,得,從而得橢圓的方程;(2)由題目分析如果存兩定點,則點的軌跡是橢圓或者雙曲線 ,所以把坐標(biāo)化,可得點的軌跡是橢圓,從而求得定點和點.
試題解析:當(dāng)與軸重合時,, 即,所以垂直于軸,得,,, 得,橢圓的方程為.
焦點坐標(biāo)分別為, 當(dāng)直線或斜率不存在時,點坐標(biāo)為或;
當(dāng)直線斜率存在時,設(shè)斜率分別為, 設(shè)由, 得:
, 所以:,, 則:
. 同理:, 因為
, 所以, 即, 由題意知, 所以
, 設(shè),則,即,由當(dāng)直線或斜率不存在時,點坐標(biāo)為或也滿足此方程,所以點在橢圓上.存在點和點,使得為定值,定值為.
考點:圓錐曲線的定義,性質(zhì),方程.
【方法點晴】本題是對圓錐曲線的綜合應(yīng)用進行考查,第一問通過兩個特殊位置,得到基本量,,得,,從而得橢圓的方程,第二問由題目分析如果存兩定點,則點的軌跡是橢圓或者雙曲線 ,本題的關(guān)鍵是從這個角度出發(fā),把坐標(biāo)化,求得點的軌跡方程是橢圓,從而求得存在兩定點和點.
【題型】解答題
【結(jié)束】
21
【題目】已知,,.
(Ⅰ)若,求的極值;
(Ⅱ)若函數(shù)的兩個零點為,記,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求證:;
(2)當(dāng)時,若不等式恒成立,求實數(shù)的取值范圍;
(3)若,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的方程有且只有一個實數(shù)根,求實數(shù)的取值范圍;
(2)若函數(shù)的圖象總在函數(shù)圖象的下方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】虛擬現(xiàn)實()技術(shù)被認(rèn)為是經(jīng)濟發(fā)展的新增長點,某地區(qū)引進技術(shù)后,市場收入(包含軟件收入和硬件收入)逐年翻一番,據(jù)統(tǒng)計該地區(qū)市場收入情況如圖所示,則下列說法錯誤的是( )
A.該地區(qū)2019年的市場總收入是2017年的4倍
B.該地區(qū)2019年的硬件收入比2017年和2018年的硬件收入總和還要多
C.該地區(qū)2019年的軟件收入是2018年的軟件收入的3倍
D.該地區(qū)2019年的軟件收入是2017年的軟件收入的6倍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣a|+|x|(a>0).
(1)若不等式f(x)﹣| x|≥4x的解集為{x|x≤1},求實數(shù)a的值;
(2)證明:f(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線的切線方程為,求實數(shù)的值;
(2)若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于很多人來說,提前消費的認(rèn)識首先是源于信用卡,在那個工資不高的年代,信用卡絕對是神器,稍微大件的東西都是可以選擇用信用卡來買,甚至于分期買,然后慢慢還!現(xiàn)在銀行貸款也是很風(fēng)靡的,從房貸到車貸到一般的現(xiàn)金貸.信用卡“忽如一夜春風(fēng)來”,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機抽取了100人進行抽樣分析,得到如下列聯(lián)表(單位:人)
經(jīng)常使用信用卡 | 偶爾或不用信用卡 | 合計 | |
40歲及以下 | 15 | 35 | 50 |
40歲以上 | 20 | 30 | 50 |
合計 | 35 | 65 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān)?
(2)①現(xiàn)從所抽取的40歲及以下的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進行分層抽樣抽取10人,然后,再從這10人中隨機選出4人贈送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;
②將頻率視為概率,從市所有參與調(diào)查的40歲以上的網(wǎng)民中隨機抽取3人贈送禮品,記其中經(jīng)常使用信用卡的人數(shù)為,求隨機變量的分布列、數(shù)學(xué)期望和方差.
參考公式:,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的離心率為且經(jīng)過點
(1)求橢圓C的方程;
(2)過點(0,2)的直線l與橢圓C交于不同兩點A、B,以OA、OB為鄰邊的平行四邊形OAMB的頂點M在橢圓C上,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com