20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$.焦距為2c,且c,$\sqrt{2}$,2成等比數(shù)列.
(I)求橢圓C的標準方程;
(Ⅱ)點B坐標為(0,$\sqrt{2}$),問是否存在過點B的直線1交橢圓C于M,N兩點,且滿足$\overrightarrow{OM}$$⊥\overrightarrow{ON}$(O為坐標原點)?若存在,求出此時直線l的方程.若不存在,請說明理由.

分析 (I)由題意可知:($\sqrt{2}$)2=2c,橢圓的離心率可得a=$\sqrt{2}$c,即可求得a和b的值,即可求得橢圓方程;
(Ⅱ)設(shè)直線MN的方程,代入橢圓方程,由韋達定理及向量數(shù)量積的坐標運算,即可求得k的值,直線l的方程.

解答 解:(I)由題意離心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,則a=$\sqrt{2}$c,
由c,$\sqrt{2}$,2成等比數(shù)列則($\sqrt{2}$)2=2c,即c=1,a=$\sqrt{2}$,
則b2=a2-c2=1,
∴橢圓的標準方程為:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(Ⅱ)存在過點B的直線1交橢圓C于M,N兩點,且滿足$\overrightarrow{OM}$$⊥\overrightarrow{ON}$,
由題意可知:直線MN的斜率存在,則直線MN的方程y=kx+$\sqrt{2}$,設(shè)M(x1,y1),N(x2,y2),
$\left\{\begin{array}{l}{y=kx+\sqrt{2}}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,整理得:(1+2k2)x2+4$\sqrt{2}$kx+2=0,
則△=(4$\sqrt{2}$k)2-4×(1+2k2)×2>0,整理得:k2>$\frac{1}{2}$,解得:k>$\frac{\sqrt{2}}{2}$,k<-$\frac{\sqrt{2}}{2}$,
由韋達定理可知:x1+x2=-$\frac{4\sqrt{2}k}{1+2{k}^{2}}$,x1x2=$\frac{2}{1+2{k}^{2}}$,
則y1y2=(kx1+$\sqrt{2}$)(kx2+$\sqrt{2}$)=k2x1x2+$\sqrt{2}$k(x1+x2)+2=$\frac{2-2{k}^{2}}{1+2{k}^{2}}$,
由x1x2+y1y2=0,整理得:k2=2,解得:k=$\sqrt{2}$或k=-$\sqrt{2}$,
則直線y=$\sqrt{2}$x+$\sqrt{2}$或y=-$\sqrt{2}$x+$\sqrt{2}$,
綜上可知:存在這樣的直線y=$\sqrt{2}$x+$\sqrt{2}$或y=-$\sqrt{2}$x+$\sqrt{2}$橢圓C于M,N兩點,且滿足$\overrightarrow{OM}$$⊥\overrightarrow{ON}$.

點評 本題考查橢圓的標準方程及簡單幾何性質(zhì),直線與橢圓的位置關(guān)系,考查韋達定理,向量數(shù)量積的坐標運算,考查計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+2y-3≥0}\\{2x+y-6≤0}\end{array}\right.$,則z=x-2y的最小值為( 。
A.-6B.-2C.-1D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)=$\frac{1}{3}$ax3-x2(a>0)在(0,3)內(nèi)不單調(diào),則實數(shù)a的取值范圍是(  )
A.0<a<$\frac{1}{3}$B.0<a<$\frac{2}{3}$C.a>$\frac{2}{3}$D.$\frac{2}{3}$<a<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=mlnx+(m-1)x(m∈R).
(Ⅰ)當m=3時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若f(x)存在最大值M,且M>0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右頂點分別為A、B,上頂點為C,若△ABC是底角為30°的等腰三角形,則$\frac{c}{a}$=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知k∈R,點P(a,b)是直線x+y=2k與圓x2+y2=k2-2k+3的公共點,則ab的最大值為( 。
A.15B.9C.1D.-$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若角α的終邊經(jīng)過點P0(-3,-4),則tanα=( 。
A.$\frac{4}{3}$B.$\frac{3}{4}$C.-$\frac{4}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知f(x)=bx-b,g(x)=(bx-1)ex,b∈R
(Ⅰ)若b≥0,討論g(x)的單調(diào)性;
(Ⅱ)若不等式f(x)>g(x)有且僅有兩個整數(shù)解,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若(1-8x5)(ax2-$\frac{1}{\sqrt{x}}$)4的展開式中含x3項的系數(shù)是16,則a=±2.

查看答案和解析>>

同步練習冊答案