14.命題p:A={x|x2+(m+2)x+1=0,x∈R}且A∩R+=∅;命題q:α:|x-$\frac{3}{2}$|<$\frac{7}{2}$,β:m+1<x<2m-1,α是β的必要非充分條件.
(1)若命題p為真命題,求實(shí)數(shù)m的取值范圍;
(2)若命題p和命題q中有且只有一個(gè)是真命題,求實(shí)數(shù)m的取值范圍.

分析 (1)根據(jù)二次函數(shù)的性質(zhì)求出p為真時(shí)的m的范圍即可;(2)求出q為真時(shí)的m的范圍,通過討論p,q的真假,得到關(guān)于m的不等式組,解出即可.

解答 解:(1)命題p:A={x|x2+(m+2)x+1=0,x∈R}且A∩R+=∅,
故p為真時(shí)滿足$\left\{\begin{array}{l}{△{=(m+2)}^{2}-4≥0}\\{-(m+2)≤0}\end{array}\right.$,
解得:m≥0;
(2)命題q:α:|x-$\frac{3}{2}$|<$\frac{7}{2}$,∴-2<x<5,
而β:m+1<x<2m-1,α是β的必要非充分條件,
∴$\left\{\begin{array}{l}{m+1>-2}\\{2m-1<5}\end{array}\right.$,解得:-3<m<3,
若命題p和命題q中有且只有一個(gè)是真命題,
則$\left\{\begin{array}{l}{m≥0}\\{m≥3或m≤-3}\end{array}\right.$或$\left\{\begin{array}{l}{m<0}\\{-3<m<3}\end{array}\right.$,
解得:m≥3或-3<m<0.

點(diǎn)評(píng) 本題考查了充分必要條件,考查二次函數(shù)的性質(zhì)以及解不等式組問題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.比較下列各組數(shù)的大小
(1)sin(-320°)與sin700°
(2)cos$\frac{17π}{8}$與cos$\frac{37π}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.化簡(jiǎn)sin2αsin2β+cos2αcos2β-$\frac{1}{2}$cos2αcos2β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.給出如下定義:對(duì)函數(shù)y=f(x),x∈D.若存在實(shí)常數(shù)C,對(duì)任意的x1∈D,存在唯一的x2∈D,使得$\frac{f({x}_{1})+f({x}_{2})}{2}$=C成立,則稱函數(shù)y=f(x)為“和諧函數(shù)”,常數(shù)C為函數(shù)y=f(x)的“和諧數(shù)”,若函數(shù)g(x)=lnx,x∈[e2,e3]為“和諧函數(shù)”,則其可能的“和諧數(shù)”為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.方程sin3x=cosx的解集為{x|x=$\frac{π}{8}$-$\frac{1}{2}$kπ或x=kπ+$\frac{π}{4}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.為了了解某地區(qū)的1003名學(xué)生的數(shù)學(xué),打算從中抽取一個(gè)容量為50的樣本,現(xiàn)用系統(tǒng)抽樣的方法,需要從總體中剔除3個(gè)個(gè)體,在整個(gè)過程中,每個(gè)個(gè)體被剔除的概率和每個(gè)個(gè)體被抽取的概率分別為(  )
A.$\frac{3}{1003}$,$\frac{1}{20}$B.$\frac{1000}{1003}$,$\frac{1}{20}$C.$\frac{3}{1003}$,$\frac{50}{1003}$D.$\frac{1000}{1003}$,$\frac{50}{1003}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)$y={log_{0.5}}({x^2}-x-2)$的單調(diào)遞增區(qū)間是(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.一艘輪船從A出發(fā),沿南偏東70°的方向航行40海里后到達(dá)海島B,然后從B出發(fā),沿北偏東35°的方向航行了40$\sqrt{2}$海里到達(dá)海島C.如果下次航行直接從A出發(fā)到C,此船航行的方向和路程(海里)分別為( 。
A.北偏東80°,20($\sqrt{6}$+$\sqrt{2}$)B.北偏東65°,20($\sqrt{3}$+2)C.北偏東65°,20($\sqrt{6}$+$\sqrt{2}$)D.北偏東80°,20($\sqrt{3}$+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知向量$\overrightarrow m$=(1,-2),$\overrightarrow n$=(1,1),且向量$\overrightarrow m$與$\overrightarrow m$+λ$\overrightarrow n$垂直,則λ=( 。
A.$\frac{5}{3}$B.-$\frac{5}{3}$C.5D.-5

查看答案和解析>>

同步練習(xí)冊(cè)答案