5.化簡sin2αsin2β+cos2αcos2β-$\frac{1}{2}$cos2αcos2β

分析 利用二倍角公式化簡所給的式子,可得結(jié)果.

解答 解:sin2αsin2β+cos2αcos2β-$\frac{1}{2}$cos2αcos2β=$\frac{1-cos2α}{2}$•$\frac{1-cos2β}{2}$+$\frac{1+cos2α}{2}$•$\frac{1+cos2β}{2}$-$\frac{1}{2}$cos2αcos2β
=$\frac{1-cos2β-cos2α+cos2αcos2β}{4}$+$\frac{1+cos2β+cos2α+cos2αcos2β}{4}$-$\frac{1}{2}$cos2αcos2β 
=$\frac{1+cos2αcos2β}{2}$-$\frac{1}{2}$cos2αcos2β=$\frac{1}{2}$.

點(diǎn)評 本題主要考查二倍角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ln(a+x)在點(diǎn)(0,f(0))處的切線斜率為1.
(1)求實(shí)數(shù)a的值;
(2)證明:f(x)≤x;
(3)證明:f($\frac{1}{{1}^{2}}$)+f($\frac{1}{{2}^{2}}$)+f($\frac{1}{{3}^{2}}$)+…+f($\frac{1}{{n}^{2}}$)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.化簡$\frac{1+sinx}{cosx}$•$\frac{sin2x}{2co{s}^{2}(\frac{π}{4}-\frac{x}{2})}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=xlnx+ax+b在點(diǎn)(1,f(1))處的切線為3x-y-2=0.
(1)求函數(shù)f(x)的解析式;
(2)若k∈Z,且存在x>0,使得k>$\frac{f(x+1)}{x}$成立,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若(1-$\frac{2}{x}$)2n的展開式有9項(xiàng),則n的值為.
A.5B.4C.9D.$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.化簡:C${\;}_{2n}^{2}$+C${\;}_{2n}^{4}$+…+C${\;}_{2n}^{2k}$+…+C${\;}_{2n}^{2n}$=22n-1-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\frac{|\overrightarrow{a}|+|\overrightarrow|}{|\overrightarrow{a}-\overrightarrow|}$的取值范圍是(  )
A.(0,1)B.(1,2)C.(1,+∞)D.(1,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.命題p:A={x|x2+(m+2)x+1=0,x∈R}且A∩R+=∅;命題q:α:|x-$\frac{3}{2}$|<$\frac{7}{2}$,β:m+1<x<2m-1,α是β的必要非充分條件.
(1)若命題p為真命題,求實(shí)數(shù)m的取值范圍;
(2)若命題p和命題q中有且只有一個是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在(3x2-$\frac{2}{{\sqrt{x}}$)5的二項(xiàng)展開式中,常數(shù)項(xiàng)等于240.

查看答案和解析>>

同步練習(xí)冊答案