【題目】我國(guó)古代數(shù)學(xué)名著《九章算術(shù)商功》中闡述:“斜解立方,得兩塹堵.斜解塹堵,其一為陽(yáng)馬,一為鱉臑.陽(yáng)馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗(yàn)之以棊,其形露矣.”若稱為“陽(yáng)馬”的某幾何體的三視圖如圖所示,圖中網(wǎng)格紙上小正方形的邊長(zhǎng)為1,對(duì)該幾何體有如下描述:

①四個(gè)側(cè)面都是直角三角形;

②最長(zhǎng)的側(cè)棱長(zhǎng)為

③四個(gè)側(cè)面中有三個(gè)側(cè)面是全等的直角三角形;

④外接球的表面積為24π.

其中正確的描述為____

【答案】①②④

【解析】

由三視圖還原幾何體,可知該幾何體為四棱錐,PA⊥底面ABCD,PA2,底面ABCD為矩形,AB2,BC4,然后逐一分析四個(gè)命題得答案.

由三視圖還原原幾何體如圖,

可知該幾何體為四棱錐,PA⊥底面ABCDPA=2,

底面ABCD為矩形,AB=2,BC=4,

則四個(gè)側(cè)面是直角三角形,故①正確;

最長(zhǎng)棱為PC,長(zhǎng)度為2,故②正確;

由已知可得,PB=2,PC=2,PD=2,則四個(gè)側(cè)面均不全等,故③錯(cuò)誤;

把四棱錐補(bǔ)形為長(zhǎng)方體,則其外接球半徑為PC=,其表面積為4π×=24π,故④正確.

∴其中正確的命題是①②④.

故答案為:①②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓與拋物線y2x有一個(gè)相同的焦點(diǎn),且該橢圓的離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)P(0,1)的直線與該橢圓交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)劃在某水庫(kù)建一座至多安裝3臺(tái)發(fā)電機(jī)的水電站,過(guò)去50年的水文資料顯示,水庫(kù)年入流量(年入流量:一年內(nèi)上游來(lái)水與庫(kù)區(qū)降水之和.單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過(guò)120的年份有35年,超過(guò)120的年份有5年.將年入流量在以上三段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨(dú)立.

(1)求未來(lái)4年中,至多1年的年入流量超過(guò)120的概率;

(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量限制,并有如下關(guān)系:

年入流量

發(fā)電量最多可運(yùn)行臺(tái)數(shù)

1

2

3

若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)年利潤(rùn)為5000萬(wàn)元;若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)年虧損800萬(wàn)元,欲使水電站年總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺(tái)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某幼兒園舉辦“yue”主題系列活動(dòng)——“悅”動(dòng)越健康親子運(yùn)動(dòng)打卡活動(dòng),為了解小朋友堅(jiān)持打卡的情況,對(duì)該幼兒園所有小朋友進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表:

打卡天數(shù)

17

18

19

20

21

男生人數(shù)

3

5

3

7

2

女生人數(shù)

3

5

5

7

3

1)根據(jù)上表數(shù)據(jù),求該幼兒園男生平均打卡的天數(shù);

2)若從打卡21天的小朋友中任選2人交流心得,求選到男生和女生各1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列滿足,,為非零常數(shù).

1)是否存在實(shí)數(shù),使得數(shù)列成為等差數(shù)列或等比數(shù)列,若存在,找出所有的,及對(duì)應(yīng)的通項(xiàng)公式;若不存在,說(shuō)明理由;

2)當(dāng)時(shí),記,證明:數(shù)列是等比數(shù)列;

3)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體ABCDA1B1C1D1 的棱長(zhǎng)為 2,且AC BD 交于點(diǎn)O,E 為棱DD1 中點(diǎn),以A 為原點(diǎn),建立空間直角坐標(biāo)系Axyz,如圖所示.

(Ⅰ)求證:B1O平面EAC

(Ⅱ)若點(diǎn)F EA 上且B1FAE,試求點(diǎn)F 的坐標(biāo);

(Ⅲ)求二面角B1EAC 的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,,,,.

1)求證:平面FBC

2)線段ED上是否存在點(diǎn)Q,使平面平面QBC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的六面體中,面是邊長(zhǎng)為2的正方形,面是直角梯形,,.

(1)求證:平面;

(2)若二面角為60°,求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)戶計(jì)劃種植萵筍和西紅柿,種植面積不超過(guò)畝,投入資金不超過(guò)萬(wàn)元,假設(shè)種植萵筍和西紅柿的產(chǎn)量、成本和售價(jià)如下表:

年產(chǎn)量/畝

年種植成本/畝

每噸售價(jià)

萵筍

5噸

1萬(wàn)元

0.5萬(wàn)元

西紅柿

4.5噸

0.5萬(wàn)元

0.4萬(wàn)元

那么,該農(nóng)戶一年種植總利潤(rùn)(總利潤(rùn)=總銷售收入-總種植成本)的最大值為____萬(wàn)元

查看答案和解析>>

同步練習(xí)冊(cè)答案