分析 根據新定義得出f(x)的解析式,作出f(x)的函數圖象,則f(x)與y=m±1共有4個交點,根據圖象列出不等式組解出.
解答 解:解不等式x-4≤$\frac{7}{4}x$-4得x≥0,f(x)=$\left\{\begin{array}{l}{-\frac{3}{4}{x}^{2}+3x,x≥0}\\{\frac{21}{16}{x}^{2}-3x,x<0}\end{array}\right.$,
畫出函數f(x)的大致圖象如圖所示.
因為關于x的方程|f(x)-m|=1(m∈R),即f(x)=m±1(m∈R)恰有四個互不相等的實數根,
所以兩直線y=m±1(m∈R)與曲線y=f(x)共有四個不同的交點,
∴$\left\{\begin{array}{l}{m+1>3}\\{0<m-1<3}\end{array}\right.$或$\left\{\begin{array}{l}{1<m+1<3}\\{m-1<0}\end{array}\right.$或$\left\{\begin{array}{l}{m+1=3}\\{m-1=0}\end{array}\right.$,
解得2<m<4或-1<m<1.
故答案為(-1,1)∪(2,4).
點評 本題考查了函數零點與函數圖象的關系,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{2}}}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{6}}}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{4\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ?x∈(1,+∞),x3+16≤8x | B. | ?x∈(1,+∞),x3+16<8x | ||
C. | ?x∈(1,+∞),x3+16≤8x | D. | ?x∈(1,+∞),x3+16<8x |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 數列{2n-1}的前 4項的和 | B. | 數列{2n-1}的第4項 | ||
C. | 數列{2n}的前5項的和 | D. | 數列?{2n-1}的第5項 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [5,6] | B. | [5,7] | C. | [4,6] | D. | [6,9] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com