16.在矩形ABCD中,將△ABC沿其對角線AC折起來得到△AB1C,且頂點B1在平面ACD上的射影O恰好落在邊AD上(如圖所示).
(Ⅰ)證明:AB1⊥平面B1CD;
(Ⅱ)若AB=1,BC=$\sqrt{3}$,求三棱錐B1-ABC的體積.

分析 (Ⅰ)利用線面垂直的判定證明AB1⊥CD,又AB1⊥B1C,且B1C∩CD=C,可得AB1⊥平面B1CD;
(Ⅱ)根據(jù)體積公式,由已知求得△ABC的面積,而高即為B1O,又易證△AB1D為直角△,則斜邊AD上的高B1O可求,則三棱錐B1-ABC的體積可求.

解答 (Ⅰ)證明:如圖,
∵ABCD是矩形,∴AB⊥BC,則AB1⊥B1C,
在三棱錐B1-ACD中,∵B1O⊥面ACD,∴B1O⊥CD,
又CD⊥AD,且AD∩B1O=O,∴CD⊥平面AB1O,則CD⊥AB1,
又B1C∩CD=C,∴AB1⊥平面B1CD;
(Ⅱ)解:由于AB1⊥平面B1CD,B1D?平面ABCD,
∴AB1⊥B1D,在Rt△AB1D中,${B}_{1}D=\sqrt{A{D}^{2}-A{{B}_{1}}^{2}}=\sqrt{2}$,
又由B1O•AD=AB1•B1D,得${B}_{1}O=\frac{A{B}_{1}•{B}_{1}D}{AD}$=$\frac{\sqrt{6}}{3}$,
∴${V}_{{B}_{1}-ABC}=\frac{1}{3}$S△ABC•B1O=$\frac{1}{3}×\frac{1}{2}$×1×$\sqrt{3}$×$\frac{\sqrt{6}}{3}$=$\frac{\sqrt{2}}{6}$.

點評 本題考查線面垂直的判定,考查空間想象能力和思維能力,訓練了利用等積法求多面體的體積,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1、F2,且F2為拋物線y2=24x的焦點,設點P為兩曲線的一個公共點,若△PF1F2的面積為36$\sqrt{6}$,則雙曲線的方程為(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1B.$\frac{{x}^{2}}{27}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知向量$\overrightarrow{a}$=(-2,4),$\overrightarrow$=(-1,m).若$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)m的值為( 。
A.-$\frac{1}{2}$B.-2C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設集合M={-4,-3,-2,-1,0,1},N={x∈R|x2+3x<0},則M∩N=( 。
A.{-3,-2,-1,0}B.{-2,-1,0}C.{-3,-2,-1}D.{-2,-1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x≤2}\\{x+y≥2}\\{2x-y≥2}\end{array}\right.$,則$\frac{y+x}{y+2x}$的取值范圍是( 。
A.[0,1]B.[$\frac{1}{3}$,1]C.[$\frac{1}{2}$,$\frac{2}{3}$]D.[$\frac{1}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)$f(x)=\frac{1}{x+2}$,點O為坐標原點,點${A_n}(n,f(n))(n∈{N^*})$,向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A}_{n}}$與$\overrightarrow{i}$的夾角,則使得$\frac{{cos{θ_1}}}{{sin{θ_1}}}+\frac{{cos{θ_2}}}{{sin{θ_2}}}+\frac{{cos{θ_3}}}{{sin{θ_3}}}+…+\frac{{cos{θ_n}}}{{sin{θ_n}}}<t$恒成立的實  數(shù)t的取值范圍為t≥$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構(gòu)用簡單隨機抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如表.
  非一線 一線 總計
 愿生 45 20 65
 不愿生 13 22 35
 總計 58 42 100
附表:
 P(K2≥k) 0.050 0.010 0.001
 k 3.841 6.635 10.828
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$算得,K2=$\frac{100×(45×22-20×13)^{2}}{58×42×35×65}$≈9.616參照附表,得到的正確結(jié)論是( 。
A.在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別無關(guān)”
C.有99%以上的把握認為“生育意愿與城市級別有關(guān)”
D.有99%以上的把握認為“生育意愿與城市級別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.從1、2、3、4、5、6中任三個數(shù),則所取的三個數(shù)按一定的順序可排成等差數(shù)列的概率為( 。
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{7}{20}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知直角梯形ABCD中,AB∥CD,AB⊥AD,AB=4,CD=6,AD=5,點E在梯形內(nèi),那么∠AEB為鈍角的概率為(  )
A.$\frac{2π}{25}$B.$\frac{4π}{25}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習冊答案