6.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,且F2為拋物線y2=24x的焦點(diǎn),設(shè)點(diǎn)P為兩曲線的一個(gè)公共點(diǎn),若△PF1F2的面積為36$\sqrt{6}$,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1B.$\frac{{x}^{2}}{27}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

分析 利用△PF1F2的面積為36$\sqrt{6}$,求出P的坐標(biāo),利用雙曲線的定義,求出a,即可求出雙曲線的方程.

解答 解:由題意,F(xiàn)2(6,0),
設(shè)P(m,n),則
∵△PF1F2的面積為36$\sqrt{6}$,
∴$\frac{1}{2}×12×|n|$=36$\sqrt{6}$,∴|n|=6$\sqrt{6}$,
∴m=9,
取P(9,6$\sqrt{6}$),則2a=$\sqrt{(9+6)^{2}+(6\sqrt{6})^{2}}$-$\sqrt{(9-6)^{2}+(6\sqrt{6})^{2}}$=6,
∴a=3,b=3$\sqrt{3}$,
∴雙曲線的方程為$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1,
故選A.

點(diǎn)評(píng) 本題考查雙曲線的方程與性質(zhì),考查三角形面積的計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線的方程是$y=\sqrt{3}x$,它的一個(gè)焦點(diǎn)落在拋物線y2=16x的準(zhǔn)線上,則雙曲線的方程為( 。
A.$\frac{x^2}{8}-\frac{y^2}{24}=1$B.$\frac{x^2}{24}-\frac{y^2}{8}=1$C.$\frac{x^2}{4}-\frac{y^2}{12}=1$D.$\frac{x^2}{12}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)滿足如下條件:①任意x∈R,有f(x)+f(-x)=0成立;②當(dāng)x≥0時(shí),f(x)=$\frac{1}{2}$(|x-m2|+|x-2m2|-3m2);③任意x∈R,有f(x)≥f(x-1)成立.則實(shí)數(shù)m的取值范圍(  )
A.$[{-\frac{{\sqrt{6}}}{6},\frac{{\sqrt{6}}}{6}}]$B.$[{-\frac{1}{6},\frac{1}{6}}]$C.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$D.$[{-\frac{1}{3},\frac{1}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知圓C:(x-6)2+y2=20,直線l:y=kx與圓C交于不同的兩點(diǎn)A、B.
(Ⅰ)求實(shí)數(shù)k的取值范圍;
(Ⅱ)若$\overrightarrow{OB}$=2$\overrightarrow{OA}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.復(fù)數(shù)z=$\frac{1+i}{i}$,則|z|=( 。
A.$\sqrt{2}$B.2C.-$\sqrt{2}$D.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,三棱錐P-ABC中,PA=PC,底面ABC為正三角形.
(Ⅰ)證明:AC⊥PB;
(Ⅱ)若平面PAC⊥平面ABC,AC=PC=2,求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=lnx+$\sqrt{x}+a(x-1)+b(a,b∈R,a,b$為常數(shù))的圖象經(jīng)過(guò)點(diǎn)(1,0),且在點(diǎn)(1,0)處的切線與直線y=-$\frac{2}{3}$x垂直.
(Ⅰ)求a、b的值;
(Ⅱ)當(dāng)1<x<3時(shí),有f(x)<$\frac{(9+m)x+5m-9}{x+5}$成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.我國(guó)南北朝時(shí)代的數(shù)學(xué)家祖暅提出體積的計(jì)算原理(祖暅原理):“冪勢(shì)既同,則積不容 異”.“勢(shì)’’即是高,“冪”是面積.意思是:如果兩等高的幾何體在同高處截得兩幾何體的截面積恒等,那么這兩個(gè)幾何體的體積相等,類比祖暅原理,如圖所示,在平面直角坐標(biāo)系中,圖1是一個(gè)形狀不規(guī)則的封閉圖形,圖2是一個(gè)上底為l的梯形,且當(dāng)實(shí)數(shù)t取[0,3]上的任意值時(shí),直線y=t被圖l和圖2所截得的兩線段長(zhǎng)始終相等,則圖l的面積為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在矩形ABCD中,將△ABC沿其對(duì)角線AC折起來(lái)得到△AB1C,且頂點(diǎn)B1在平面ACD上的射影O恰好落在邊AD上(如圖所示).
(Ⅰ)證明:AB1⊥平面B1CD;
(Ⅱ)若AB=1,BC=$\sqrt{3}$,求三棱錐B1-ABC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案