18.已知函數(shù)f(x)=lnx+$\sqrt{x}+a(x-1)+b(a,b∈R,a,b$為常數(shù))的圖象經(jīng)過點(1,0),且在點(1,0)處的切線與直線y=-$\frac{2}{3}$x垂直.
(Ⅰ)求a、b的值;
(Ⅱ)當(dāng)1<x<3時,有f(x)<$\frac{(9+m)x+5m-9}{x+5}$成立,求實數(shù)m的取值范圍.

分析 (Ⅰ)將(1,0)代入f(x),求導(dǎo)則在(1,0)處切線斜率k=f′(1),由(1+$\frac{1}{2}$+a)×(-$\frac{2}{3}$)=-1,即可求得a和b的值;
(Ⅱ)由1<x<3時,$f(x)<\frac{(9+m)x+5m-9}{x+5}$等價為$f(x)<\frac{9(x-1)}{x+5}+m$,構(gòu)造輔助函數(shù),求導(dǎo),利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,求得函數(shù)的最值,即可求得實數(shù)m的取值范圍.

解答 解:(Ⅰ)將(1,0)代f(x),可知:$0=ln1+\sqrt{1}+a(1-1)+b$①
∵求導(dǎo)$f'(x)=\frac{1}{x}+\frac{1}{{2\sqrt{x}}}+a$,則在(1,0)處切線斜率k=f′(1)=1+$\frac{1}{2}$+a,
則(1+$\frac{1}{2}$+a)×(-$\frac{2}{3}$)=-1,②
由①、②解得:a=0,b=-1,
a、b的值0,-1;…(6分)
(Ⅱ)由(Ⅰ)知$f(x)=lnx+\sqrt{x}-1$,
∵$\frac{(9+m)x+5m-9}{x+5}=\frac{9(x-1)+m(x+5)}{x+5}=\frac{9(x-1)}{x+5}+m$,
∴1<x<3時,$f(x)<\frac{(9+m)x+5m-9}{x+5}$等價為$f(x)<\frac{9(x-1)}{x+5}+m$,…(8分)
令$h(x)=f(x)-\frac{9(x-1)}{x+5}$,則h(x)<m,
當(dāng)1<x<3時,$h'(x)=\frac{1}{x}+\frac{1}{{2\sqrt{x}}}-\frac{54}{{{{(x+5)}^2}}}=\frac{{2+\sqrt{x}}}{2x}-\frac{54}{{{{(x+5)}^2}}}$,
∵x>1時$2\sqrt{x}=2\sqrt{x•1}<x+1$,
∴$h'(x)=\frac{{2+\sqrt{x}}}{2x}-\frac{54}{{{{(x+5)}^2}}}<\frac{x+5}{4x}-\frac{54}{{{{(x+5)}^2}}}=\frac{{{{(x+5)}^3}-216x}}{{4x{{(x+5)}^2}}}$,
令p(x)=(x+5)3-216x,則p'(x)=(x+5)3-216x=3(x+5)2-216
∵1<x<3,
∴p'(x)=3(x+5)2-216<3(3+5)2-216<0,
∴p(x)=(x+5)3-216x在(1,3)內(nèi)為減函數(shù),
∵p(1)=(1+5)3-216=0,
∴當(dāng)1<x<3時$h'(x)=\frac{{2+\sqrt{x}}}{2x}-\frac{54}{{{{(x+5)}^2}}}<\frac{x+5}{4x}-\frac{54}{{{{(x+5)}^2}}}=\frac{{{{(x+5)}^3}-216x}}{{4x{{(x+5)}^2}}}<0$,
∴$h(x)=f(x)-\frac{9(x-1)}{x+5}$在(1,3)內(nèi)為減函數(shù),
∵h(yuǎn)(1)=0,
∴當(dāng)1<x<3時,$h(x)=f(x)-\frac{9(x-1)}{x+5}<0$
∴實數(shù)m的取值范圍是(0,+∞).…(12分)

點評 本題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性及最值,利用導(dǎo)數(shù)求函數(shù)的切線方程,考查導(dǎo)數(shù)與不等式的綜合應(yīng)用,考查轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=(a+$\frac{1}{a}$)lnx-x+$\frac{1}{x}$,其中a>0.
(Ⅰ)若f(x)在(0,+∞)上存在極值點,求a的取值范圍;
(Ⅱ)設(shè)a∈(1,e],當(dāng)x1∈(0,1),x2∈(1,+∞)時,記f(x2)-f(x1)的最大值為M(a),那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若實數(shù)x、y滿足$\left\{\begin{array}{l}{y≤x}\\{y≥\frac{1}{2}x}\\{x+y≤1}\end{array}\right.$,則z=2x-y的最大值為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1、F2,且F2為拋物線y2=24x的焦點,設(shè)點P為兩曲線的一個公共點,若△PF1F2的面積為36$\sqrt{6}$,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1B.$\frac{{x}^{2}}{27}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若過點P(1-a,1+a)和Q(3,2a)的直線的傾斜角為鈍角,則實數(shù)a的取值范圍是( 。
A.(-2,1)B.(-1,2)C.(-∞,0)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線l過拋物線y2=2px(p>0)的焦點且與該拋物線的軸垂直,若直線l與該拋物線圍成的封閉圖形的面積為$\frac{3}{2}$,則p等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.三棱錐P-ABC的四個頂點都在半徑為4的球面上,且三條側(cè)棱兩兩互相垂直,則該三棱錐側(cè)面積的最大值為32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow{a}$=(-2,4),$\overrightarrow$=(-1,m).若$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)m的值為(  )
A.-$\frac{1}{2}$B.-2C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機(jī)構(gòu)用簡單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如表.
  非一線 一線 總計
 愿生 45 20 65
 不愿生 13 22 35
 總計 58 42 100
附表:
 P(K2≥k) 0.050 0.010 0.001
 k 3.841 6.635 10.828
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$算得,K2=$\frac{100×(45×22-20×13)^{2}}{58×42×35×65}$≈9.616參照附表,得到的正確結(jié)論是(  )
A.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別無關(guān)”
C.有99%以上的把握認(rèn)為“生育意愿與城市級別有關(guān)”
D.有99%以上的把握認(rèn)為“生育意愿與城市級別無關(guān)”

查看答案和解析>>

同步練習(xí)冊答案