13.若過(guò)點(diǎn)P(1-a,1+a)和Q(3,2a)的直線的傾斜角為鈍角,則實(shí)數(shù)a的取值范圍是( 。
A.(-2,1)B.(-1,2)C.(-∞,0)D.(-∞,-2)∪(1,+∞)

分析 由直線的傾斜角α為鈍角,能得出直線的斜率小于0,解不等式求出實(shí)數(shù)a的取值范圍.

解答 解:∵過(guò)點(diǎn)P(1-a,1+a)和Q(3,2a)的直線的傾斜角α為鈍角,
∴直線的斜率小于0,
即 $\frac{2a-a-1}{3-1+a}$<0,即 $\frac{a-1}{a+2}$<0,解得-2<a<1,
故選:A

點(diǎn)評(píng) 本題考查直線的斜率公式及直線的傾斜角與斜率的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=2$\sqrt{3}$sin(ax-$\frac{π}{4}$)cos(ax-$\frac{π}{4}$)+2cos2(ax-$\frac{π}{4}$)(a>0),且函數(shù)的最小正周期為$\frac{π}{2}$.
(Ⅰ)求a的值;
(Ⅱ)求f(x)在[0,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=(x2-x-1)ex
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若方程a($\frac{f(x)}{{e}^{x}}$+1)+ex=ex在(0,1)內(nèi)有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.復(fù)數(shù)z=$\frac{1+i}{i}$,則|z|=(  )
A.$\sqrt{2}$B.2C.-$\sqrt{2}$D.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.定積分${∫}_{0}^{-1}$($\sqrt{1-{x}^{2}}$+x)dx的值為$\frac{π}{4}$+$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=lnx+$\sqrt{x}+a(x-1)+b(a,b∈R,a,b$為常數(shù))的圖象經(jīng)過(guò)點(diǎn)(1,0),且在點(diǎn)(1,0)處的切線與直線y=-$\frac{2}{3}$x垂直.
(Ⅰ)求a、b的值;
(Ⅱ)當(dāng)1<x<3時(shí),有f(x)<$\frac{(9+m)x+5m-9}{x+5}$成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,四邊形ABCD是梯形,AB∥CD,AB⊥AD,SA⊥平面ABCD,E、F分別是SC、SD的中點(diǎn),SA=AD=2CD=4AB=4.
(1)求證:EF∥平面SAB;
(2)求證:BE⊥平面SCD;
(3)求二面角B-SD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知全集A={x|x≤9,x∈N*}集合B={x|0<x<7},則A∩B=(  )
A.{x|0<x<7}B.{x|1≤x≤6}C.{1,2,3,4,5,6}D.{7,8,9}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)圓O1和圓O2是兩個(gè)定圓,動(dòng)圓P與這兩個(gè)定圓都相切,則圓P的圓心軌跡可能是( 。
A.①③⑤B.②④⑤C.①②④D.①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案