【題目】已知橢圓的右焦點為,點在橢圓上,且點到點的最大距離為,點到點的最小距離為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線交橢圓、兩點,坐標(biāo)原點到直線的距離為,求面積的最大值.

【答案】1;(2.

【解析】

1)根據(jù)題意可得出關(guān)于的方程組,求出這兩個量的值,進而可得出的值,由此可得出橢圓的標(biāo)準(zhǔn)方程;

2)分兩種情況討論:①軸,求得;②直線的斜率存在時,設(shè)直線的方程為,設(shè)點、,由直線與圓相切得出,再將直線的方程與橢圓的方程聯(lián)立,利用韋達定理結(jié)合弦長公式可求得的最大值,進而可求得面積的最大值.

1)設(shè)橢圓的焦距為,則

解得

因此,橢圓的標(biāo)準(zhǔn)方程為;

2)設(shè)、.

①當(dāng)軸時,

②當(dāng)軸不垂直時,設(shè)直線的方程為,則

.

代入橢圓方程整理,得,

.

當(dāng)且僅當(dāng)時,等號成立.

,因此,面積的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰中,,,分別為的中點,的中點,在線段上,且。將沿折起,使點的位置(如圖2所示),且。

(1)證明:平面;

(2)求平面與平面所成銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若時,請討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)時,若上有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201991日,《西安市生活垃圾分類管理辦法》正式實施.根據(jù)規(guī)定,生活垃圾分為可回收物、有害垃圾、廚余垃圾和其他垃圾,個人和單位如果不按規(guī)定進行垃圾分類將面臨罰款,并納入征信系統(tǒng).為調(diào)查市民對垃圾分類的了解程度,某調(diào)查小組隨機抽取了某小區(qū)的100位市民,請他們指出生活中若干項常見垃圾的種類,把能準(zhǔn)確分類不少于3項的稱為比較了解,少于三項的稱為不太了解.調(diào)查結(jié)果如下:

0

1

2

3

4

5

5項以上

男(人)

1

5

15

8

6

7

3

女(人)

0

4

11

13

10

12

5

1)完成如下列聯(lián)表并判斷是否有99%的把握認為了解垃圾分類與性別有關(guān)?

比較了解

不太了解

合計

合計

2)從對垃圾分類比較了解的市民中用分層抽樣的方式抽取8位,現(xiàn)從這8位市民中隨機選取兩位,求至多有一位男市民的概率.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的棱長均為2,OAC的中點,平面A'OB平面ABC,平面平面ABC.

1)求證:A'O⊥平面ABC;

2)求二面角ABCC'的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年上半年我國多個省市暴發(fā)了非洲豬瘟疫情,生豬大量病死,存欄量急劇下降,一時間豬肉價格暴漲,其他肉類價格也跟著大幅上揚,嚴(yán)重影響了居民的生活.為了解決這個問題,我國政府一方面鼓勵有條件的企業(yè)和散戶防控疫情,擴大生產(chǎn);另一方面積極向多個國家開放豬肉進口,擴大肉源,確保市場供給穩(wěn)定.某大型生豬生產(chǎn)企業(yè)分析當(dāng)前市場形勢,決定響應(yīng)政府號召,擴大生產(chǎn)決策層調(diào)閱了該企業(yè)過去生產(chǎn)相關(guān)數(shù)據(jù),就一天中一頭豬的平均成本與生豬存欄數(shù)量之間的關(guān)系進行研究.現(xiàn)相關(guān)數(shù)據(jù)統(tǒng)計如下表:

生豬存欄數(shù)量(千頭)

2

3

4

5

8

頭豬每天平均成本(元)

3.2

2.4

2

1.9

1.5

1)研究員甲根據(jù)以上數(shù)據(jù)認為具有線性回歸關(guān)系,請幫他求出關(guān)于的線.性回歸方程(保留小數(shù)點后兩位有效數(shù)字)

2)研究員乙根據(jù)以上數(shù)據(jù)得出的回歸模型:.為了評價兩種模型的擬合效果,請完成以下任務(wù):

①完成下表(計算結(jié)果精確到0.01元)(備注:稱為相應(yīng)于點的殘差);

生豬存欄數(shù)量(千頭)

2

3

4

5

8

頭豬每天平均成本(元)

3.2

2.4

2

1.9

1.5

模型甲

估計值

殘差

模型乙

估計值

3.2

2.4

2

1.76

1.4

殘差

0

0

0

0.14

0.1

②分別計算模型甲與模型乙的殘差平方和,并通過比較的大小,判斷哪個模型擬合效果更好.

3)根據(jù)市場調(diào)查,生豬存欄數(shù)量達到1萬頭時,飼養(yǎng)一頭豬每一天的平均收入為7.5元;生豬存欄數(shù)量達到1.2萬頭時,飼養(yǎng)一頭豬每一天的平均收入為7.2元若按(2)中擬合效果較好的模型計算一天中一頭豬的平均成本,問該生豬存欄數(shù)量選擇1萬頭還是1.2萬頭能獲得更多利潤?請說明理由.(利潤=收入-成本)

參考公式:.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,,,,四邊形是矩形,平面平面,.

1)證明:平面

2)若二面角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)在其定義域內(nèi)為單調(diào)函數(shù),求的取值范圍;

2)設(shè)函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)給出兩個條件:①,②,從中選出一個條件補充在下面的問題中,并以此為依據(jù)求解問題:(選出一種可行的條件解答,若兩個都選,則按第一個解答計分)在中,分別為內(nèi)角所對的邊( ).

1)求;

2)若,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案