【題目】如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCDEF||AB,AB=2BC=EF=1,AE=,DE=3∠BAD=60,GBC的中點.

)求證:FG||平面BED;

)求證:平面BED⊥平面AED;

)求直線EF與平面BED所成角的正弦值.

【答案】)詳見解析()詳見解析(

【解析】

試題()證明線面平行,一般利用線面平行判定定理,即從線線平行出發(fā)給予證明,而線線平行尋找與論證,往往結(jié)合平幾知識,如本題構(gòu)造一個平行四邊形:取的中點為,可證四邊形是平行四邊形,從而得出)面面垂直的證明,一般轉(zhuǎn)化為證線面垂直,而線面垂直的證明,往往需多次利用線面垂直判定與性質(zhì)定理,而線線垂直的證明有時需要利用平幾條件,如本題可由余弦定理解出,即)求線面角,關(guān)鍵作出射影,即面的垂線,可利用面面垂直的性質(zhì)定理得到線面垂直,即面的垂線:過點于點,則平面,從而直線與平面所成角即為.再結(jié)合三角形可求得正弦值

試題解析:()證明:取的中點為,連接,在中,因為的中點,所以,又因為,所以

,即四邊形是平行四邊形,所以,又平面,平面,所以平面.

)證明:在中,,由余弦定理可,進(jìn)而可得,即,又因為平面平面平面;平面平面,所以平面.又因為平面,所以平面平面.

)解:因為,所以直線與平面所成角即為直線與平面所成角.過點于點,連接,又因為平面平面,由()知平面,所以直線與平面所成角即為.中,,由余弦定理可得,所以,因此,在中,,所以直線與平面所成角的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】土筍凍是閩南種廣受歡迎的特色傳統(tǒng)風(fēng)味小吃某小區(qū)超市銷售一款土筍凍,進(jìn)價為每個15元,售價為每個20元.銷售的方案是當(dāng)天進(jìn)貨,當(dāng)天銷售,未售出的全部由廠家以每個10元的價格回購處理.根據(jù)該小區(qū)以往的銷售情況,得到如圖所示的頻率分布直方圖:

(1)估算該小區(qū)土筍凍日需求量的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

(2)已知該超市某天購進(jìn)了150個土筍凍,假設(shè)當(dāng)天的需求量為銷售利潤為元.

(i)求關(guān)于的函數(shù)關(guān)系式;

(ii)結(jié)合上述頻率分布直方圖,以額率估計概率的思想,估計當(dāng)天利潤不小于650元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體中,側(cè)面是正方形,是等腰直角三角形,點是正方形對角線的交點,.

(1)證明:平面;

(2)若側(cè)面與底面垂直,求五面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,點在線段PC上,且三棱錐的體積是四棱錐的體積的,,平面.

1)若的中點,證明:直線∥平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點,軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù),直線與曲線分別交于兩點.

(1)若點的極坐標(biāo)為,求的值;

(2)求曲線的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若是函數(shù)的一個極值點,求的值;

(2)若上恒成立,求的取值范圍;

(3)證明:為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,點M,N分別為線段A1B,B1C的中點.

(1)求證:MN∥平面AA1C1C;

(2)若∠ABC=90°,AB=BC=2,AA1=3,求點B1到面A1BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長該地一建設(shè)銀行統(tǒng)計連續(xù)五年的儲蓄存款(年底余額)得到下表:

年份x

2014

2015

2016

2017

2018

儲蓄存款y(千億元)

5

6

7

8

10

為便于計算,工作人員將上表的數(shù)據(jù)進(jìn)行了處理(令),得到下表:

時間t

1

2

3

4

5

儲蓄存款z

0

1

2

3

5

1)求z關(guān)于t的線性回歸方程;

2)通過(1)中的方程,求出y關(guān)于x的回歸方程;

3)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達(dá)多少?

附:線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點及圓.

(1)若直線過點且與圓心的距離為1,求直線的方程;

(2)設(shè)過點的直線與圓交于兩點,當(dāng)時,求以線段為直徑的圓的方程;

(3)設(shè)直線與圓交于兩點,是否存在實數(shù),使得過點的直線垂直平分弦?若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案