19.設(shè)m、n是二條不同的直線,α、β是二個不同的平面,說法正確的是( 。
A.若m∥n,n∥α,則m∥αB.若m∥β,n∥β,則m∥n
C.若m⊥β,n⊥β,n⊥α,則m⊥αD.若m⊥n,n⊥β,則m⊥β

分析 根據(jù)線面位置關(guān)系的判定與性質(zhì)進(jìn)行判斷或舉反例說明.

解答 解:對于A,當(dāng)m?α?xí)r,顯然結(jié)論錯誤,故A錯誤;
對于B,若m∥β,n∥β,則直線m,n可能平行,可能相交也可能異面,故B錯誤;
對于C,若m⊥β,n⊥β,則m∥n,又n⊥α,故m⊥α,故C正確;
對于D,若m⊥n,n⊥β,則m?β或m∥β,故D錯誤.

點評 本題考查了空間線面位置關(guān)系的判斷與性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.f(x)=2cos2x+2$\sqrt{3}$sinxcosx-1的值域[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)f′(x),且滿足f(x)+f′(x)<-2,f(1)=2,則不等式exf(x)>4e-2ex(其中e為自然對數(shù)的底數(shù))的解集為( 。
A.(-∞,1)B.(1,+∞)C.(-∞,0)∪(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)隨機變量ξ服從正態(tài)分布N(2,4)若P(ξ<a-3)=p(ξ>2a+1),則實數(shù)a的值是(  )
A.-4B.$\frac{4}{3}$C.2D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(θ)=$\sqrt{3}$sinθ+cosθ,其中角θ的頂點與坐標(biāo)原點重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過點P($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),則f(θ)=( 。
A.2B.$\sqrt{3}$C.1D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow{a}$=(2,x-3),$\overrightarrow$=(x,2),則“x=-1”是“$\overrightarrow{a}$∥$\overrightarrow$”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)雙曲線的實軸長為2a(a>0),一個焦點為F,虛軸的一個端點為B,如果直線FB恰好與圓x2+y2=a2相切,那么雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.△ABC中,A,B,C所對應(yīng)的邊分別為a,b,c,且邊BC上的高為$\frac{a}{4}$,則$\frac{c}+\frac{c}$的取值范圍為[2,$2\sqrt{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.復(fù)數(shù)z=(2+3i)i的實部與虛部之和為( 。
A.1B.-1C.5D.-5

查看答案和解析>>

同步練習(xí)冊答案