【題目】函數(shù)
(1)若是定義域上的單調(diào)函數(shù),求的取值范圍.
(2)設(shè),分別為的極大值和極小值,若,求取值范圍.
【答案】(1) 或 (2)
【解析】
(1)首先求函數(shù)的定義域以及導(dǎo)函數(shù),由是定義域上的單調(diào)函數(shù)等價于導(dǎo)函數(shù)在定義域范圍內(nèi)恒大于等于零或恒小于等于零,分別令導(dǎo)函數(shù)大于等于零或恒小于等于零,分離參數(shù),即可求出的取值范圍;
(2)設(shè)的兩根為,可得, ,將,代入化簡,構(gòu)造函數(shù),求導(dǎo)數(shù),應(yīng)用單調(diào)性,即可得到的范圍.
(1) 函數(shù)是定義域為 ,,
由是定義域上的單調(diào)函數(shù)等價于導(dǎo)函數(shù)在定義域范圍內(nèi)恒大于等于零或恒小于等于零
①令,即,則恒成立,∴
②令,即,則恒成立,∴
綜上,或
(2)由且得
此時設(shè)的兩根為,
所以
因為,
所以,
由,且得
所以
由得代入上式得
令,
所以,
,
則,
所以在上為減函數(shù)
從而,即
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點.
(1)設(shè)P是上的一點,且AP⊥BE,求∠CBP的大。
(2)當(dāng)AB=3,AD=2時,求二面角E-AG-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為提升學(xué)生的數(shù)學(xué)學(xué)習(xí)能力,進(jìn)行了主題分別為“運(yùn)算”、“推理”、“想象”、“建!彼膱龈傎.規(guī)定:每場競賽前三名得分分別為、、(,且、、),選手的最終得分為各場得分之和.最終甲、乙、丙三人包攬了每場競賽的前三名,在四場競賽中,已知甲最終得分為分,乙最終得分為分,丙最終得分為分,且乙在“運(yùn)算”這場競賽中獲得了第一名,那么“運(yùn)算”這場競賽的第三名是( )
A.甲B.乙C.丙D.甲和丙都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,橢圓的一個頂點與兩個焦點構(gòu)成的三角形面積為2.
(1)求橢圓的方程;
(2)已知直線與橢圓交于兩點,且與軸,軸交于兩點.
(i)若,求的值;
(ii)若點的坐標(biāo)為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性;
(2)若對于時,不等式恒成立,求實數(shù)的取值范圍;
(3)若存在時,使不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是實常數(shù).
(1)當(dāng)時,判斷函數(shù)的奇偶性,并給出證明;
(2)若是奇函數(shù),不等式有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機(jī)對學(xué)習(xí)的影響,部分統(tǒng)計數(shù)據(jù)如表經(jīng)計算,則下列選項正確的是( )
使用智能手機(jī) | 不使用智能手機(jī) | 合計 | |
學(xué)習(xí)成績優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績不優(yōu)秀 | 16 | 2 | 18 |
合計 | 20 | 10 | 30 |
附表
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
A. 有99.5%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)有影響
B. 有99.5%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)無影響
C. 有99.9%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)有影響
D. 有99.9%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)無影響
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中, ,,,,,點在上,且,將沿折起,使得平面平面 (如圖), 為中點.
(1)求證: 平面;
(2)在線段上是否存在點,使得平面?若存在,求的值,并加以證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)性;
(2)當(dāng)時,若函數(shù)的極值為e,求的值;
(3)當(dāng)時,若,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com