分析 由sinA=sinC,利用正弦定理可得a=c,結(jié)合B=30°,可求C=A=75°,由正弦定理,可得a,c的值,進而利用三角形面積公式即可計算得解.
解答 解:∵在△ABC中,由sinA=sinC,可得a=c,
∴△ABC是等腰三角形,
又∵B=30°,
∴可得:C=A=75°,
∴由正弦定理,可得a=$\frac{bsinA}{sinB}$=$\frac{2×sin75°}{\frac{1}{2}}$=$\sqrt{2}+$$\sqrt{6}$=c,
∴△ABC的面積S△ABC=$\frac{1}{2}$ac•sinB=$\frac{1}{2}$×($\sqrt{2}+$$\sqrt{6}$)×($\sqrt{2}+$$\sqrt{6}$)×$\frac{1}{2}$=2+$\sqrt{3}$.
故答案為:2+$\sqrt{3}$.
點評 本題考查的知識點是正弦定理和三角形面積公式,求得a,c,A的值是解題的關(guān)鍵,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1} | B. | {-1} | C. | {(-1,1)} | D. | {-1,1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com