【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求.
【答案】(1);(2).
【解析】
試題分析:(1)在兩邊同乘以,則有,即這就是圓的直角坐標(biāo)方程;(2)方法一:把代入
.方法二:聯(lián)立方程組求得
,又點(diǎn)的坐標(biāo)為,故.
試題解析:(1)方法一:(1)由,
得,即;
(2)將的參數(shù)方程代入圓的直角坐標(biāo)方程,得
,即,
由于,
故可設(shè)是上述方程的兩實(shí)根,
所以,又直線過點(diǎn),故由上式及的幾何意義得
.
方法二:(1)同方法一.
(2)因?yàn)閳A的圓心為點(diǎn),半徑,直線的普通方程為,
由得,
解得或,
不妨設(shè),又點(diǎn)的坐標(biāo)為,
故.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵市民節(jié)約用電,實(shí)行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費(fèi),超過200度但不超過400度的部分按0.8元/度收費(fèi),超過400度的部分按1.0元/度收費(fèi).
(1)求某戶居民用電費(fèi)用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;
(2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費(fèi)用不超過260元的點(diǎn)80%,求的值;
(3)在滿足(2)的條件下,估計(jì)1月份該市居民用戶平均用電費(fèi)用(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為,點(diǎn)P(0,1)和點(diǎn)A(m,n)(m≠0)都在橢圓C上,直線PA交x軸于點(diǎn)M.
(1)求橢圓C的方程,并求點(diǎn)M的坐標(biāo)(用m,n表示);
(2)設(shè)O為原點(diǎn),點(diǎn)B與點(diǎn)A關(guān)于x軸對稱,直線PB交x軸于點(diǎn)N.問:y軸上是否存在點(diǎn)Q,使得∠OQM=∠ONQ?若存在,求點(diǎn)Q的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為 (為參數(shù)).
(I)寫出直線的一般方程與曲線的直角坐標(biāo)方程,并判斷它們的位置關(guān)系;
(II)將曲線向左平移個單位長度,向上平移個單位長度,得到曲線,設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點(diǎn)為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|y=},B={x|x2-x-6=0}.
(1)若a=-1,求A∩B;
(2)若()∩B=,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合P={x|-2≤x≤10},Q={x|1-m≤x≤1+m}.
(1)求集合RP;
(2)若PQ,求實(shí)數(shù)m的取值范圍;
(3)若P∩Q=Q,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著生活水平的提高,越來越多的人參與了潛水這項(xiàng)活動。某潛水中心調(diào)查了100名男姓與100名女姓下潛至距離水面5米時是否會耳鳴,下圖為其等高條形圖:
繪出2×2列聯(lián)表;
②根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯誤的概率不超過0.05的前提下認(rèn)為耳鳴與性別有關(guān)系?
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了調(diào)查喜歡語文學(xué)科與性別的關(guān)系,隨機(jī)調(diào)查了一些學(xué)生情況,具體數(shù)據(jù)如下表:
調(diào)查統(tǒng)計(jì) | 不喜歡語文 | 喜歡語文 |
男 | 13 | 10 |
女 | 7 | 20 |
為了判斷喜歡語文學(xué)科是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),得到K2的觀測值
k=≈4.844,因?yàn)閗≥3.841,根據(jù)下表中的參考數(shù)據(jù):
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
判定喜歡語文學(xué)科與性別有關(guān)系,那么這種判斷出錯的可能性為( )
A. 95% B. 50% C. 25% D. 5%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動時間的樣本數(shù)據(jù)(單位:小時)
(Ⅰ)應(yīng)收集多少位女生樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:.估計(jì)該校學(xué)生每周平均體育運(yùn)動時間超過4個小時的概率.
(Ⅲ)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動時間超過4個小時.請完成每周平均體育運(yùn)動時間與性別的列聯(lián)表,并判斷是否有的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動時間與性別有關(guān)”.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com