【題目】在平面直角坐標(biāo)系中,以為極點, 軸的正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為,曲線的極坐標(biāo)方程為.
(1)寫出直線的直角坐標(biāo)方程和曲線的普通方程;
(2)求直線與曲線的交點的直角坐標(biāo).
【答案】(1)直線的直角坐標(biāo)方程為;∵曲線的普通方程為.
(2) , .
【解析】試題分析:(1)直線的參數(shù)方程消去參數(shù)能求出直角坐標(biāo)方程;曲線的極坐標(biāo)方程化為,利用, 能求出曲線的普通方程;(2)曲線的直角坐標(biāo)方程為,與直線聯(lián)立方程組,由此能求出直線與曲線的交點的直角坐標(biāo).
試題解析:(1)∵直線的參數(shù)方程為,∴,代入,
∴,即.
∴直線的直角坐標(biāo)方程為;
∵曲線的極坐標(biāo)方程為,∴,∴.
即.
(2)曲線的直角坐標(biāo)方程為,
∴,解得或.
∴直線與曲線的交點的直角坐標(biāo)為, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若對任意的a∈(﹣3,+∞),關(guān)于x的方程f(x)=kx都有3個不同的根,則k等于( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市某礦山企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為萬元,每生產(chǎn)千件該產(chǎn)品需另投入萬元,設(shè)該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且
(Ⅰ)寫出年利潤(萬元)關(guān)于產(chǎn)品年產(chǎn)量(千件)的函數(shù)關(guān)系式;
(Ⅱ)問:年產(chǎn)量為多少千件時,該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤最大?
注:年利潤=年銷售收入-年總成本.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解小學(xué)生的體能情況,抽取了某校一個年級的部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),已知圖中從左到右前三個小組的頻率分別為 0.1,0.3,0.4,第一小組的頻數(shù)為 5.
(1)求第四小組的頻率;
(2)若次數(shù)在 75 次以上(含75 次)為達(dá)標(biāo),試估計該年級學(xué)生跳繩測試的達(dá)標(biāo)率.
(3)在這次測試中,一分鐘跳繩次數(shù)的中位數(shù)落在哪個小組內(nèi)?試求出中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將正方形ABCD沿對角線BD折成直二面角A﹣BD﹣C,有如下四個結(jié)論:
①AC⊥BD;
②△ACD是等邊三角形;
③AB與平面BCD成60°的角;
④AB與CD所成的角為60°;
其中正確結(jié)論是(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點, 軸的正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為,曲線的極坐標(biāo)方程為.
(1)寫出直線的直角坐標(biāo)方程和曲線的普通方程;
(2)求直線與曲線的交點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b為正實數(shù),且 ,若a+b﹣c≥0對于滿足條件的a,b恒成立,則c的取值范圍為( )
A.
B.(﹣∞,3]
C.(﹣∞,6]
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某重點高中擬把學(xué)校打造成新型示范高中,為此制定了學(xué)生“七不準(zhǔn)”,“一日三省十問”等新的規(guī)章制度.新規(guī)章制度實施一段時間后,學(xué)校就新規(guī)章制度隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,調(diào)查卷共有10個問題,每個問題10分,調(diào)查結(jié)束后,按分?jǐn)?shù)分成5組:[50,60),60,70),[70,80),[80,90),[90,100],并作出頻率分布直方圖與樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中的x、y的值;
(2)在選取的樣本中,從分?jǐn)?shù)在70分以下的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行座談會,求所抽取的2名學(xué)生中恰有一人得分在[50,60)內(nèi)的概率.
5 | 3 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com