在棱長(zhǎng)為的正方體中,分別為的中點(diǎn).

(1)求直線與平面所 成 角的大;
(2)求二面角的大。

(1)  (2)

解析試題分析:(1)解法一:建立坐標(biāo)系
平面的一個(gè)法向量為  
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ab/0/buzbh.png" style="vertical-align:middle;" />,
可知直線的一個(gè)方向向量為
設(shè)直線與平面成角為,所成角為,則
   
解法二:平面,即在平面內(nèi)的射影,
為直線與平面所成角,
中, ,        
(2)解法一:建立坐標(biāo)系如圖.平面的一個(gè)法向量為
設(shè)平面的一個(gè)法向量為,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e1/f/fr1wf1.png" style="vertical-align:middle;" />,
所以,令,則
 
由圖知二面角為銳二面角,故其大小為
解法二:過作平面的垂線,垂足為,即為所求
,過的垂線設(shè)垂足為,
   在
所以 二面角的大小為. 
考點(diǎn):空間中角的求解
點(diǎn)評(píng):解決的關(guān)鍵是利用角的定義作圖來結(jié)合幾何中的性質(zhì)定理和判定定理來得到,解三角形得到,或者建立空間直角坐標(biāo)系,運(yùn)用向量法來求解。屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形是正方形,為對(duì)角線的交點(diǎn),的中點(diǎn);

(1)求證:;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個(gè)多面體的直觀圖和三視圖如圖所示,其中,分別是,的中點(diǎn).
(1)求證:平面;
(2)在線段上(含端點(diǎn))確定一點(diǎn),使得∥平面,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在長(zhǎng)方體ABCD—A1B1C1D1中,AD=AA1=1,AB=2,E為AB的中點(diǎn),F(xiàn)為CC1的中點(diǎn).

(1)證明:B F//平面E CD1
(2)求二面角D1—EC—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(文科)(本小題滿分12分)長(zhǎng)方體中,,是底面對(duì)角線的交點(diǎn).

(Ⅰ) 求證:平面;
(Ⅱ) 求證:平面;
(Ⅲ) 求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC中,ACBCABABED是邊長(zhǎng)為1的正方形,EB⊥底面ABC,若G,F分別是ECBD的中點(diǎn).
(1)求證:GF底面ABC;
(2)求證:AC⊥平面EBC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.

(1)試建立適當(dāng)?shù)淖鴺?biāo)系,并寫出點(diǎn)P、B、D的坐標(biāo);
(2)問當(dāng)實(shí)數(shù)a在什么范圍時(shí),BC邊上能存在點(diǎn)Q,使得PQ⊥QD?
(3)當(dāng)BC邊上有且僅有一個(gè)點(diǎn)Q使得PQ⊥QD時(shí),求二面角Q-PD-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在長(zhǎng)方體中,點(diǎn)在棱上.

(1)求異面直線所成的角;
(2)若二面角的大小為,求點(diǎn)到面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直角梯形ABCD中,,,且,E、F分別為線段CD、AB上的點(diǎn),且.將梯形沿EF折起,使得平面平面BCEF,折后BD與平面ADEF所成角正切值為

(Ⅰ)求證:平面BDE
(Ⅱ)求平面BCEF與平面ABD所成二面角(銳角)的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案