分析 (1)由已知利用坐標(biāo)意義即可得出.
(2)解法一:利用兩點(diǎn)之間的距離公式即可得出.
解法二:利用勾股定理即可得出.
解答 解:(1)正方體各頂點(diǎn)的坐標(biāo)如下:A1(0,0,0),B1(0,2,0),C1(2,2,0),D1(2,0,0),A(0,0,2),B(0,2,2),C(2,2,2),D(2,0,2)
(2)解法一:$|{{A_1}C}|=\sqrt{{2^2}+{2^2}+{2^2}}=2\sqrt{3}$.
解法二:∵$|{{A_1}{C_1}}|=2\sqrt{2},|{A{A_1}}|=2$,
在Rt△AA1C1中,${|{A{C_1}}|^2}={|{A{A_1}}|^2}+{|{{A_1}{C_1}}|^2}$,
∴${|{A{C_1}}|^2}={2^2}+{(2\sqrt{2})^2}=12$,∴$|{A{C_1}}|=2\sqrt{3}$,∴$|{{A_1}C}|=2\sqrt{3}$.
點(diǎn)評(píng) 本題考查了空間向量坐標(biāo)、兩點(diǎn)之間的距離公式、勾股定理、正方體的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6$\sqrt{2}$+4$\sqrt{5}$ | B. | 6$\sqrt{2}$+2$\sqrt{5}$ | C. | 3$\sqrt{2}$+4$\sqrt{5}$ | D. | 3$\sqrt{2}$+2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{68}{5}$ | B. | $\frac{69}{5}$ | C. | 14 | D. | $\frac{71}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 92,4 | B. | 93,5 | C. | 93,4 | D. | 92,$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com