12.已知點(diǎn)A(3,0),B(-3,0),|AC|-|BC|=4,則點(diǎn)C軌跡方程是( 。
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x<0)B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x>0)D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=0(x<0)

分析 由正弦定理,得|AC|-|BC|=4<6=|AB|,可得C的軌跡是以A,B為焦點(diǎn)的雙曲線左支,結(jié)合雙曲線的標(biāo)準(zhǔn)方程用待定系數(shù)法,即可求出頂點(diǎn)C的軌跡方程.

解答 解:∵|AC|-|BC|=4<|AB|
∴可得C的軌跡是以A,B為焦點(diǎn)的雙曲線左支,a=2,c=3
∴b2=c2-a2=5,可得雙曲線的方程為 $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1
∴頂點(diǎn)C的軌跡方程為 $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x<0),
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的定義和標(biāo)準(zhǔn)方程,正弦定理的應(yīng)用,判斷C的軌跡是以A,B為焦點(diǎn)的雙曲線左支,是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知數(shù)列{an}的前n項(xiàng)和為${S_n}=3{n^2}+8n$,{bn}為等差數(shù)列,且b1=4,b3=10,則數(shù)列$\left\{{\frac{{{{({a_n}+1)}^{n+1}}}}{{3{{({b_n}+2)}^n}}}}\right\}$的前n項(xiàng)和Tn=n×2n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A={x|-5<x<2},B={x|x>1},則A∪B等于( 。
A.{x|x>-5}B.{x|-5<x<1}C.{x|x>1}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.參數(shù)方程$\left\{\begin{array}{l}x=1+\frac{1}{t}\\ y=1-\frac{1}{t}\end{array}\right.$(t為參數(shù)),化為一般方程為x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.判斷居民戶是否小康的一個(gè)重要指標(biāo)是居民戶的年收入,某市從轄區(qū)內(nèi)隨機(jī)抽取100個(gè)居民戶,對(duì)每個(gè)居民戶的年收入與年結(jié)余的情況進(jìn)行分析,設(shè)第i個(gè)居民戶的年收入xi(萬(wàn)元),年結(jié)余yi(萬(wàn)元),經(jīng)過(guò)數(shù)據(jù)處理的:$\sum_{i=1}^{100}{x}_{i}$=400,$\sum_{i=1}^{100}{y}_{i}$=100,$\sum_{i=1}^{100}{x}_{i}{y}_{i}$=900,$\sum_{i=1}^{100}{{x}^{2}}_{i}$=2850.
(1)已知家庭的年結(jié)余y對(duì)年收入x具有線性相關(guān)關(guān)系,求線性回歸方程;
(2)若該市的居民戶年結(jié)余不低于5萬(wàn),即稱該居民戶已達(dá)小康生活,請(qǐng)預(yù)測(cè)居民戶達(dá)到小康生活的最低年收入應(yīng)為多少萬(wàn)元?
附:在y=bx+a中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}^{2}}_{i}-n{\overline{x}}^{2}}$,a=$\overline{y}-b\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)是定義在R上的奇函數(shù),且f(1)=1,對(duì)于任意的x1,x2∈R(x1≠x2),都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$.
(1)解關(guān)于x的不等式f(x2-3ax)+f(2a2)<0;
(2)若f(x)≤m2-2am+1對(duì)所有x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)非零實(shí)數(shù)a,b滿足a<b,則下列不等式中一定成立的是(  )
A.$\frac{1}{a}$$>\frac{1}$B.ab<b2C.a2<b2D.a-b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,已知AB=AC=4,BC=2,∠B的平分線交AC于點(diǎn)D,則$\overrightarrow{AC}$•$\overrightarrow{BD}$的值為-$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.(B組題)設(shè)函數(shù)f(x)=Asin(ωx+φ)(其中A,ω,φ是常數(shù)).若函數(shù)f(x)在區(qū)間$[{-\frac{π}{4},\frac{π}{4}}]$上具有單調(diào)性,且$f(-\frac{π}{2})=f(-\frac{π}{4})=-f(\frac{π}{4})$,則f(x)的對(duì)稱中心坐標(biāo)為($\frac{3kπ}{4}$,0)(其中k∈Z).

查看答案和解析>>

同步練習(xí)冊(cè)答案