7.命題p:關(guān)于x的方程x2+ax+2=0無實(shí)根,命題q:函數(shù)f(x)=logax在(0,+∞)上單調(diào)遞增,若“p∧q”為假命題,“p∨q”真命題,則實(shí)數(shù)a的取值范圍是( 。
A.(-2$\sqrt{2}$,+∞)B.(-2$\sqrt{2}$,2$\sqrt{2}$)C.(-2$\sqrt{2}$,1]∪[2$\sqrt{2}$,+∞)D.(-∞,2$\sqrt{2}$)

分析 命題p:關(guān)于x的方程x2+ax+2=0無實(shí)根,則△<0,解得a范圍.命題q:函數(shù)f(x)=logax在(0,+∞)上單調(diào)遞增,可得a>1.若“p∧q”為假命題,“p∨q”真命題,則命題p與q一真一假.

解答 解:命題p:關(guān)于x的方程x2+ax+2=0無實(shí)根,則△=a2-8<0,解得$-2\sqrt{2}<a<2\sqrt{2}$.
命題q:函數(shù)f(x)=logax在(0,+∞)上單調(diào)遞增,∴a>1.
若“p∧q”為假命題,“p∨q”真命題,則命題p與q一真一假.
∴$\left\{\begin{array}{l}{-2\sqrt{2}<a<2\sqrt{2}}\\{a≤1}\end{array}\right.$或$\left\{\begin{array}{l}{a≤-2\sqrt{2}或a≥2\sqrt{2}}\\{a>1}\end{array}\right.$,
解得$-2\sqrt{2}<a≤1$,或$a≥2\sqrt{2}$.
故選:C.

點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì)、不等式的解法、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=\frac{{ex-2{e^x}}}{{{e^{x+1}}}}$,g(x)=xlnx.
(Ⅰ)求函數(shù)g(x)在區(qū)間[2,4]上的最小值;
(Ⅱ)證明:對(duì)任意m,n∈(0,+∞),都有g(shù)(m)≥f(n)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在矩形ABCD中,AB=4,BC=2,E為BC的中點(diǎn),若F為該矩形內(nèi)(含邊界)任意一點(diǎn),則$\overrightarrow{AE}$•$\overrightarrow{AF}$的最大值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.定義在實(shí)數(shù)集R上的函數(shù)f(x)是周期為2的周期函數(shù),且當(dāng)x∈[-1,1]時(shí),$f(x)=\left\{\begin{array}{l}{2^x}+1(0≤x≤1)\\{2^{-x}}+1(-1≤x<0)\end{array}\right.$.請(qǐng)?jiān)O(shè)計(jì)計(jì)算f(x)的函數(shù)值的算法程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2x3-3x2+1,g(x)=kx+1-lnx.
(1)若過點(diǎn)P(a,-4)恰有兩條直線與曲線y=f(x)相切,求a的值;
(2)用min{p,q}表示p,q中的最小值,設(shè)函數(shù)h(x)=min{f(x),g(x)}(x>0),若h(x)恰有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知命題p:方程x2+mx+1=0有兩個(gè)不等的負(fù)實(shí)根,命題q:方程4x2+4(m-2)x+1=0無實(shí)根,
(1)若命題p為真,求實(shí)數(shù)m的取值范圍;
(2)若命題p和命題q一真一假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.閱讀如圖所示的程序框圖,則輸出結(jié)果S的值為$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y-3≥0}\\{x-y+1≥0}\\{2x-y-3≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=3x+2y的取值范圍是( 。
A.[6,22]B.[7,22]C.[8,22]D.[7,23]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=asinωx+acosωx(a>0,ω>0)的圖象如圖所示,則實(shí)數(shù)a和ω的最小正值分別為(  )
A.a=2,ω=2B.a=2,ω=1C.a=2,$ω=\frac{3}{2}$D.a=2,$ω=\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案