19.閱讀如圖所示的程序框圖,則輸出結(jié)果S的值為$\frac{2016}{2017}$.

分析 由題意,程序的功能是求和S=$\frac{2}{1×3}$+$\frac{2}{3×5}$+…+$\frac{2}{2015×2017}$,利用裂項法,即可求和.

解答 解:由題意,程序的功能是求和S=$\frac{2}{1×3}$+$\frac{2}{3×5}$+…+$\frac{2}{2015×2017}$=1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2015}$-$\frac{1}{2017}$=$\frac{2016}{2017}$,
故答案為$\frac{2016}{2017}$.

點評 本題考查程序框圖,考查裂項法求和,確定程序的功能是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,AC=$\sqrt{13}$,BC=1,B=60°,則△ABC的面積為( 。
A.$\sqrt{3}$B.2C.2$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖是某賽季甲、乙兩名籃球運動員每場比賽得分情況的莖葉圖.從這個莖葉圖可以看出甲、乙兩名運動員得分的中位數(shù)分別是35,26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.命題p:關(guān)于x的方程x2+ax+2=0無實根,命題q:函數(shù)f(x)=logax在(0,+∞)上單調(diào)遞增,若“p∧q”為假命題,“p∨q”真命題,則實數(shù)a的取值范圍是(  )
A.(-2$\sqrt{2}$,+∞)B.(-2$\sqrt{2}$,2$\sqrt{2}$)C.(-2$\sqrt{2}$,1]∪[2$\sqrt{2}$,+∞)D.(-∞,2$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知全集為R,且集合A={x|log2(x+1)<2},$B=\{x|\frac{x-2}{x-1}≥0\}$,則A∩(∁RB)等于( 。
A.(-1,1)B.(-1,1]C.[1,2)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)拋物線x2=2py (P>0),M為直線y=-2p上任意一點,過M引拋物線的切線,切點分別為A,B,A,B,M的橫坐標分別為XA,XB,XM則( 。
A.XA+XB=2XMB.XA•XB=X${\;}_{M}^{2}$C.$\frac{1}{{X}_{A}}$+$\frac{1}{{X}_{B}}$=$\frac{2}{{X}_{M}}$D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“若a≥$\frac{1}{2}$,則?x≥0,都有f(x)≥0成立”的逆否命題是(  )
A.若?x≥0,有f(x)<0成立,則a<$\frac{1}{2}$B.若?x<0,f(x)≥0,則a<$\frac{1}{2}$
C.若?x≥0,都有f(x)<0成立,則a<$\frac{1}{2}$D.若?x<0,有f(x)<0成立,則a<$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.點P為△ABC所在平面內(nèi)一點,當$\overrightarrow{PA}•\overrightarrow{PB}+\overrightarrow{PB}•\overrightarrow{PC}+\overrightarrow{PC}•\overrightarrow{PA}$取最小值時,點P為△ABC的(  )
A.內(nèi)心B.外心C.重心D.垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.四棱錐P-ABCD的底面ABCD為正方形,PA⊥底面ABCD,若AB=2,PA=1,則此四棱錐的外接球的體積為( 。
A.36πB.16πC.$\frac{9π}{2}$D.$\frac{9π}{4}$

查看答案和解析>>

同步練習(xí)冊答案