3.函數(shù)f(x)=mlnx-cosx在x=1處取到極值,則m的值為( 。
A.sin1B.-sin1C.cos1D.-cos1

分析 求出函數(shù)f(x)的導(dǎo)數(shù),根據(jù)f′(1)=0,求出m的值即可.

解答 解:f′(x)=$\frac{m}{x}$+sinx,
由題意得:f′(1)=m+sin1=0,解得:m=-sin1,
故選:B.

點評 本題考查了函數(shù)極值的意義,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若x、y滿足約束條件$\left\{\begin{array}{l}x+y≥1\\ y≤x\\ x≥1\end{array}\right.$,則$\frac{y+1}{x-1}$的取值范圍為(-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知S=1+2+3+…+100.請設(shè)計一個程序框圖,輸出S的值并寫出相應(yīng)的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,若tanAtanB=1,則$sin(C+\frac{π}{3})$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)F1,F(xiàn)2分別是橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點,點P在橢圓C上,若線段PF1的中點在y軸上,∠PF1F2=30°,F(xiàn)1F2=2,則橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.甲、乙兩臺機床同時生產(chǎn)一種零件,10天中,兩臺機床每天出的次品數(shù)分別是:
甲:0、1、0、2、2、0、3、1、2、4;
乙:2、3、1、1、0、2、1、1、0、1;
則機床性能較好的為乙.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.方程sin2x=sinx在區(qū)間[0,2π)內(nèi)解的個數(shù)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知A、D分別為橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,({a>b>0})$的左頂點與上頂點,橢圓的離心率e=$\frac{{\sqrt{3}}}{2}$,F(xiàn)1、F2為橢圓的左、右焦點,點P是線段AD上的任意一點,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值為1.
(1)求橢圓E的方程.
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且OA⊥OB(O為坐標(biāo)原點),若存在,求出該圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,且過點A(2,1).
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 若P,Q是橢圓C上的兩個動點,且使∠PAQ的角平分線總垂直于x軸,試判斷直線PQ的斜率是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案